8.5 The finite element method for viscoplasticity

 

We next extend the finite element method to treat history and rate dependent materials.  The main issue to resolve is how to integrate the history dependent plastic constitutive equations with respect to time. 

 

As an example we will first develop a finite element method for a small strain rate dependent plastic constitutive law.

 

 

 

8.5.1 Summary of governing equations

 

We therefore pose the following boundary value problem, illustrated in the figure.  We are given:

 

1. The shape of the solid in its unloaded condition R 0 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaBaaaleaacaaIWaaabeaaki abgIKi7kaadkfaaaa@352F@

 

2. A body force distribution b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaaaa@31CB@  (t)  acting on the solid (Note that in this section we will use b to denote force per unit volume rather than force per unit mass, to avoid having to write out the mass density all the time)

 

3. Boundary conditions, specifying displacements u * (x,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiOkaaaaki aacIcacaWH4bGaaiilaiaadshacaGGPaaaaa@36C6@  on a portion 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  or tractions t * (t) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaaiOkaaaaki aacIcacaWG0bGaaiykaaaa@3513@  on a portion 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  of the boundary of R;

 

4. The material constants Y n, m ε ˙ 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaaGimaa qabaaaaa@3375@ , Q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuaaaa@31B6@  and ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaa aa@336D@  that characterize the viscoplastic creep law described in Section 3.7.3.

 

 

We then wish to calculate displacements, strains and stresses u i , ε ij , σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacYcacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiab eo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@3BE4@  satisfying the following equations

 

1. The strain-displacement equation ε ij = 1 2 ( u i / x j + u j / x i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiab gkGi2kaadwhadaWgaaWcbaGaamyAaaqabaGccaGGVaGaeyOaIyRaam iEamaaBaaaleaacaWGQbaabeaakiabgUcaRiabgkGi2kaadwhadaWg aaWcbaGaamOAaaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaaca WGPbaabeaakiaacMcaaaa@48E0@

 

2. The equation of static equilibrium for stresses σ ij / x i + b j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadMga aeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGQbaabeaakiabg2da9i aaicdaaaa@3F04@

 

3. The boundary conditions on displacement and stress

u i = u i * on 1 R σ ij n i = t j * on 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki abg2da9iaadwhadaqhaaWcbaGaamyAaaqaaiaacQcaaaGccaaMc8Ua aGPaVlaab+gacaqGUbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cq GHciITdaWgaaWcbaGaaGymaaqabaGccaWGsbGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaad6ga daWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG0bWaa0baaSqaaiaadQ gaaeaacaGGQaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaab+gacaqGUbGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7cqGHciITdaWgaaWcbaGaaGOmaaqabaGccaWGsbaaaa@7A89@

 

4. The constitutive equations for small-strain, power-law rate dependent plasticity, with

ε ˙ ij = ε ˙ ij e + ε ˙ ij p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0JafqyTduMbaiaadaqhaaWcbaGaamyAaiaa dQgaaeaacaWGLbaaaOGaey4kaSIafqyTduMbaiaadaqhaaWcbaGaam yAaiaadQgaaeaacaWGWbaaaaaa@3FE7@

ε ˙ ij e = 1+ν E σ ˙ ij ν 1+ν σ ˙ kk δ ij ε ˙ ij p = ε ˙ 0 exp(Q/kT) σ e σ 0 m 3 2 S ij σ e σ 0 =Y 1+ ε e ε 0 1/n S ij = σ ij σ kk δ ij /3 σ e = 3 2 S ij S ij ε ˙ e = 2 3 ε ˙ ij p ε ˙ ij p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaH1oqzgaGaamaaDaaaleaaca WGPbGaamOAaaqaaiaadwgaaaGccqGH9aqpdaWcaaqaaiaaigdacqGH RaWkcqaH9oGBaeaacaWGfbaaamaabmaabaGafq4WdmNbaiaadaWgaa WcbaGaamyAaiaadQgaaeqaaOGaeyOeI0YaaSaaaeaacqaH9oGBaeaa caaIXaGaey4kaSIaeqyVd4gaaiqbeo8aZzaacaWaaSbaaSqaaiaadU gacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaa kiaawIcacaGLPaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cuaH1oqzgaGaamaaDaaaleaacaWGPbGaamOAaaqaaiaadc haaaGccqGH9aqpcuaH1oqzgaGaamaaBaaaleaacaaIWaaabeaakiGa cwgacaGG4bGaaiiCaiaacIcacqGHsislcaWGrbGaai4laiaadUgaca WGubGaaiykamaabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaamyz aaqabaaakeaacqaHdpWCdaWgaaWcbaGaaGimaaqabaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacaWGTbaaaOWaaSaaaeaacaaIZaaabaGa aGOmaaaadaWcaaqaaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaa GcbaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaaaaaOqaaiabeo8aZnaa BaaaleaacaaIWaaabeaakiabg2da9iaadMfadaqadaqaaiaaigdacq GHRaWkdaWcaaqaaiabew7aLnaaBaaaleaacaWGLbaabeaaaOqaaiab ew7aLnaaBaaaleaacaaIWaaabeaaaaaakiaawIcacaGLPaaadaahaa WcbeqaaiaaigdacaGGVaGaamOBaaaakiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadofadaWgaaWcba GaamyAaiaadQgaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadMga caWGQbaabeaakiabgkHiTiabeo8aZnaaBaaaleaacaWGRbGaam4Aaa qabaGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaai4laiaa iodacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq 4Wdm3aaSbaaSqaaiaadwgaaeqaaOGaeyypa0ZaaOaaaeaadaWcaaqa aiaaiodaaeaacaaIYaaaaiaadofadaWgaaWcbaGaamyAaiaadQgaae qaaOGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaaabeaakiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UafqyTdu MbaiaadaWgaaWcbaGaamyzaaqabaGccqGH9aqpdaGcaaqaamaalaaa baGaaGOmaaqaaiaaiodaaaGafqyTduMbaiaadaqhaaWcbaGaamyAai aadQgaaeaacaWGWbaaaOGafqyTduMbaiaadaqhaaWcbaGaamyAaiaa dQgaaeaacaWGWbaaaaqabaaaaaa@E63A@

 

 

Note that we must now solve a history dependent problem.  We need to specify the time variation of the applied load and boundary conditions, and our objective is to calculate the displacements, strains, and stresses as functions of time.

 

 

 

8.5.2 Governing equations in terms of the Virtual Work Principle

 

As in all FEM analysis, the stress equilibrium equation is replaced by the equivalent statement of the principle of  virtual work.  Thus, u i , ε ij , σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacYcacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiab eo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@3BE4@  are determined as follows. 

 

1. First, calculate a (time dependent) displacement field that satisfies

R σ ij [ u k (t)] δ v i x j dV R b i δ v i dV 2 R t i * δ v i dA=0 u i = u i * on 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGccaGGBbGaamyDamaaBaaaleaacaWGRbaa beaakiaacIcacaWG0bGaaiykaiaac2fadaWcaaqaaiabgkGi2kabes 7aKjaadAhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG4bWa aSbaaSqaaiaadQgaaeqaaaaakiaadsgacaWGwbGaeyOeI0Yaa8quae aacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaeqiTdqMaamODamaaBaaa leaacaWGPbaabeaakiaadsgacaWGwbGaeyOeI0Yaa8quaeaacaWG0b Waa0baaSqaaiaadMgaaeaacaGGQaaaaOGaeqiTdqMaamODamaaBaaa leaacaWGPbaabeaakiaadsgacaWGbbGaeyypa0JaaGimaaWcbaGaey OaIy7aaSbaaWqaaiaaikdaaeqaaSGaamOuaaqab0Gaey4kIipaaSqa aiaadkfaaeqaniabgUIiYdaaleaacaWGsbaabeqdcqGHRiI8aaGcba GaamyDamaaBaaaleaacaWGPbaabeaakiabg2da9iaadwhadaqhaaWc baGaamyAaaqaaiaacQcaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaae4Baiaab6gacaaM c8UaaGPaVlabgkGi2oaaBaaaleaacaaIXaaabeaakiaadkfaaaaa@822E@

 

for all virtual velocity fields δ v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaaaaa@349A@  that satisfy δ v i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaakiabg2da9iaaicdaaaa@3664@  on 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@ .   Here, the notation σ ij [ u k ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaacUfacaWG1bWaaSbaaSqaaiaadUgaaeqaaOGaaiyxaaaa @3896@  is used to show that the stress in the solid depends on the displacement field (through the strain-displacement relation and the constitutive equations).

 

2. Compute the strains from the definition ε ij = 1 2 ( u i / x j + u j / x i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiab gkGi2kaadwhadaWgaaWcbaGaamyAaaqabaGccaGGVaGaeyOaIyRaam iEamaaBaaaleaacaWGQbaabeaakiabgUcaRiabgkGi2kaadwhadaWg aaWcbaGaamOAaaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaaca WGPbaabeaakiaacMcaaaa@48E0@

 

3. Compute the stresses from the constitutive equations

 

 

The stress will automatically satisfy the equation of equilibrium, so all the field equations and boundary conditions will be satisfied.

 

The procedure to solve the equations is conceptually identical to the hypoelastic solution found in Section 8.3.1 and 8.3.2.  The only complication is that the constitutive equation is time dependent, so the solution must be obtained as a function of time.

 

 

 

8.5.3 Finite element equations

 

The finite solution follows almost exactly the same procedure as before.  We first discretize the displacement field, by choosing to calculate the displacement field at a set of n nodes, as shown in the figure. We will denote the coordinates of these special points by x i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33DE@ , where the superscript a ranges from 1 to n.  The unknown displacement vector at each nodal point will be denoted by u i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33DB@ .

 

Now, however, the displacements vary as a function of time MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@328C@  we thus need to solve for u i a (t) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaWG0bGaaiykaaaa@3636@ .  We will do this by applying the load in a series of steps, and computing the change in displacement during each step.  We assume that the displacements u i a (t) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaWG0bGaaiykaaaa@3636@  are known at the end of a time step.  We wish to compute u i a (t+Δt) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaWG0bGaey4kaSIaeuiLdqKaamiDaiaacMcaaaa@3977@  at the end of the next time step.  It is convenient to write

u i a (t+Δt)= u i a (t)+Δ u i a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaWG0bGaey4kaSIaeuiLdqKaamiDaiaacMcacqGH 9aqpcaWG1bWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGaaiikaiaads hacaGGPaGaey4kaSIaeuiLdqKaamyDamaaDaaaleaacaWGPbaabaGa amyyaaaaaaa@4517@

and solve for the displacement increment Δ u i a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyDamaaDaaaleaacaWGPb aabaGaamyyaaaaaaa@3540@  at each time step.  The finite element solutions are then set up as follows

 

1. The displacement increment and the virtual displacement are interpolated in the usual way. 

Δ u i (x)= a=1 n N a (x)Δ u i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyDamaaBaaaleaacaWGPb aabeaakiaacIcacaWH4bGaaiykaiabg2da9maaqahabaGaamOtamaa CaaaleqabaGaamyyaaaakiaacIcacaWH4bGaaiykaiabfs5aejaadw hadaqhaaWcbaGaamyAaaqaaiaadggaaaaabaGaamyyaiabg2da9iaa igdaaeaacaWGUbaaniabggHiLdaaaa@4640@       δ v i (x)= a=1 n N a (x)δ v i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaakiaacIcacaWH4bGaaiykaiabg2da9maaqahabaGaamOtamaa CaaaleqabaGaamyyaaaakiaacIcacaWH4bGaaiykaiabes7aKjaadA hadaqhaaWcbaGaamyAaaqaaiaadggaaaaabaGaamyyaiabg2da9iaa igdaaeaacaWGUbaaniabggHiLdaaaa@46C0@

Here, x denotes the coordinates of an arbitrary point in the solid.

 

2. The increment in strain during the current load step follows as

Δ ε ij = 1 2 Δ u i x j + Δ u j x i = 1 2 a=1 n N a x j Δ u i a + N a x i Δ u j a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadM gacaWGQbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWa aeWaaeaadaWcaaqaaiabgkGi2kabfs5aejaadwhadaWgaaWcbaGaam yAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaa kiabgUcaRmaalaaabaGaeyOaIyRaeuiLdqKaamyDamaaBaaaleaaca WGQbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamyAaaqabaaa aaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaa aadaaeWbqaamaabmaabaWaaSaaaeaacqGHciITcaWGobWaaWbaaSqa beaacaWGHbaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabe aaaaGccqqHuoarcaWG1bWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGa ey4kaSYaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaWGHbaaaa GcbaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaGccqqHuoar caWG1bWaa0baaSqaaiaadQgaaeaacaWGHbaaaaGccaGLOaGaayzkaa aaleaacaWGHbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaaa@6D82@

We now need to find a way to compute the stress field caused by this change in strain during time interval Δt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiDaaaa@333E@ .  This issue will be addressed shortly.  For now, we just assume that we can do this somehow using the constitutive law (e.g. assign it to a grad student) and write this functional relationship as

σ ij = σ ij Δ ε kl (Δ u i a ),Δt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGc daWadaqaaiabfs5aejabew7aLnaaBaaaleaacaWGRbGaamiBaaqaba GccaGGOaGaeuiLdqKaamyDamaaDaaaleaacaWGPbaabaGaamyyaaaa kiaacMcacaGGSaGaeuiLdqKaamiDaaGaay5waiaaw2faaaaa@497B@

where the time interval Δt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiDaaaa@333E@  appears in the equation because the material is rate dependent.

 

3. Substituting into the principle of virtual work, we see that

R σ ij Δ ε kl (Δ u i a ),Δt N a x j dV R b i (t+Δt) N a dV 2 R t i * (t+Δt) N a dA δ v i a =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaadaWdrbqaaiabeo8aZnaaBa aaleaacaWGPbGaamOAaaqabaGcdaWadaqaaiabfs5aejabew7aLnaa BaaaleaacaWGRbGaamiBaaqabaGccaGGOaGaeuiLdqKaamyDamaaDa aaleaacaWGPbaabaGaamyyaaaakiaacMcacaGGSaGaeuiLdqKaamiD aaGaay5waiaaw2faamaalaaabaGaeyOaIyRaamOtamaaCaaaleqaba GaamyyaaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaa aOGaamizaiaadAfacqGHsisldaWdrbqaaiaadkgadaWgaaWcbaGaam yAaaqabaGccaGGOaGaamiDaiabgUcaRiabfs5aejaadshacaGGPaGa amOtamaaCaaaleqabaGaamyyaaaakiaadsgacaWGwbGaeyOeI0Yaa8 quaeaacaWG0bWaa0baaSqaaiaadMgaaeaacaGGQaaaaOGaaiikaiaa dshacqGHRaWkcqqHuoarcaWG0bGaaiykaiaad6eadaahaaWcbeqaai aadggaaaGccaWGKbGaamyqaaWcbaGaeyOaIy7aaSbaaWqaaiaaikda aeqaaSGaamOuaaqab0Gaey4kIipaaSqaaiaadkfaaeqaniabgUIiYd aaleaacaWGsbaabeqdcqGHRiI8aaGccaGL7bGaayzFaaGaeqiTdqMa amODamaaDaaaleaacaWGPbaabaGaamyyaaaakiabg2da9iaaicdaaa a@7ADE@

and since this must hold for all δ v i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaDaaaleaacaWGPb aabaGaamyyaaaaaaa@3581@  we must ensure that

R σ ij Δ ε kl (Δ u i a ),Δt N a x j dV R b i (t+Δt) N a dV 2 R t i * (t+Δt) N a dA =0{a,i}: x k a not on  1 R Δ u i a = u i * ( x i a ,t+Δt) u i * ( x i a ,t){a,i}: x k a on  1 R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaaiabeo8aZnaaBaaale aacaWGPbGaamOAaaqabaGcdaWadaqaaiabfs5aejabew7aLnaaBaaa leaacaWGRbGaamiBaaqabaGccaGGOaGaeuiLdqKaamyDamaaDaaale aacaWGPbaabaGaamyyaaaakiaacMcacaGGSaGaeuiLdqKaamiDaaGa ay5waiaaw2faamaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGaam yyaaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGa amizaiaadAfacqGHsisldaWdrbqaaiaadkgadaWgaaWcbaGaamyAaa qabaGccaGGOaGaamiDaiabgUcaRiabfs5aejaadshacaGGPaGaamOt amaaCaaaleqabaGaamyyaaaakiaadsgacaWGwbaaleaacaWGsbaabe qdcqGHRiI8aaWcbaGaamOuaaqab0Gaey4kIipakiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVdqaaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey OeI0Yaa8quaeaacaWG0bWaa0baaSqaaiaadMgaaeaacaGGQaaaaOGa aiikaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiykaiaad6eadaahaa WcbeqaaiaadggaaaGccaWGKbGaamyqaaWcbaGaeyOaIy7aaSbaaWqa aiaaikdaaeqaaSGaamOuaaqab0Gaey4kIipakiabg2da9iaaicdaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7cqGHaiIicaGG7bGaamyyaiaacYcacaWGPbGaaiyFaiaaykW7ca aMc8UaaGPaVlaacQdacaaMc8UaaGPaVlaaykW7caWG4bWaa0baaSqa aiaadUgaaeaacaWGHbaaaOGaaGPaVlaab6gacaqGVbGaaeiDaiaabc cacaqGVbGaaeOBaiaabccacqGHciITdaWgaaWcbaGaaeymaaqabaGc caWGsbaabaGaeuiLdqKaamyDamaaDaaaleaacaWGPbaabaGaamyyaa aakiabg2da9iaadwhadaqhaaWcbaGaamyAaaqaaiaacQcaaaGccaGG OaGaamiEamaaDaaaleaacaWGPbaabaGaamyyaaaakiaacYcacaWG0b Gaey4kaSIaeuiLdqKaamiDaiaacMcacaaMc8UaaGPaVlabgkHiTiaa ykW7caWG1bWaa0baaSqaaiaadMgaaeaacaGGQaaaaOGaaiikaiaadI hadaqhaaWcbaGaamyAaaqaaiaadggaaaGccaGGSaGaamiDaiaacMca caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqGHaiIicaGG7bGaamyyaiaacYcacaWGPbGaaiyFai aaykW7caaMc8UaaGPaVlaacQdacaaMc8UaaGPaVlaadIhadaqhaaWc baGaam4AaaqaaiaadggaaaGccaaMc8UaaGPaVlaab+gacaqGUbGaae iiaiabgkGi2oaaBaaaleaacaqGXaaabeaakiaadkfaaaaa@6681@

This is now a routine set of nonlinear equations to be solved for Δ u i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyDamaaDaaaleaacaWGPb aabaGaamyyaaaaaaa@3541@ .

 

 

 

8.5.4 Integrating the plastic stress-strain law

 

The crux of FEM for small-strain plasticity problems is to integrate the plastic stress-strain equations to obtain the stress caused by an increment in total strain Δ ε ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadM gacaWGQbaabeaaaaa@35F5@  applied to the specimen during a time interval Δt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiDaaaa@333E@ .

 

There are various ways to do this MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@328C@  here we outline a straightforward and robust technique. The problem we must solve can be posed as follows:

 

Given:    Values of stress σ ij (n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaeq4WdmNcdaqhaaWcbaGaamyAai aadQgaaeaacaGGOaGaamOBaiaacMcaaaaaaa@37CB@ , accumulated plastic strain ε e (n) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadwgaaeaaca GGOaGaamOBaiaacMcaaaaaaa@35E9@  at time t n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGUbaabeaaaa a@32F7@

 The total strain increment Δ ε ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadM gacaWGQbaabeaaaaa@35F5@  and time increment Δt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiDaaaa@333E@

 

Compute:  Values of stress σ ij (n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaeq4WdmNcdaqhaaWcbaGaamyAai aadQgaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@3968@ , accumulated plastic strain ε e (n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadwgaaeaaca GGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@3786@  at time t n+1 = t n +Δt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGUbGaey4kaS IaaGymaaqabaGccqGH9aqpcaWG0bWaaSbaaSqaaiaad6gaaeqaaOGa ey4kaSIaeuiLdqKaamiDaaaa@3B07@

 

The following procedure can be used to do this:

 

1. Calculate the deviatoric strain increment Δ e ij =Δ ε ij Δ ε kk δ ij /3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyzamaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpcqqHuoarcqaH1oqzdaWgaaWcbaGaamyA aiaadQgaaeqaaOGaeyOeI0IaeuiLdqKaeqyTdu2aaSbaaSqaaiaadU gacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGc caGGVaGaaG4maaaa@46A0@

 

2. Calculate the `elastic predictor’ for the deviatoric and effective stress at the end of the increment

S ij *(n+1) = S ij (n) + E 1+ν Δ e ij σ e *(n+1) = 3 2 S ij *(n+1) S ij *(n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaeyyp a0Jaam4uamaaDaaaleaacaWGPbGaamOAaaqaaiaacIcacaWGUbGaai ykaaaakiabgUcaRmaalaaabaGaamyraaqaaiaaigdacqGHRaWkcqaH 9oGBaaGaeuiLdqKaamyzamaaBaaaleaacaWGPbGaamOAaaqabaqcaa SaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8Uaeq4WdmNcdaqhaaWcbaGaamyzaiaaykW7aeaacaGG QaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9maaka aabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaWGtbWaa0baaSqaaiaa dMgacaWGQbaabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaacM caaaGccaWGtbWaa0baaSqaaiaadMgacaWGQbaabaGaaiOkaiaacIca caWGUbGaey4kaSIaaGymaiaacMcaaaaabeaaaaa@7F44@

 

3. Calculate the increment in effective plastic strain Δ ε e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadw gaaeqaaaaa@3502@  by solving (numerically) the following equation

σ e *(n+1) Y 3E 2Y(1+ν) Δ ε e 1+ ε e +Δ ε e ε 0 1/n Δ ε e Δt ε ˙ 0 exp(Q/kT) 1/m =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqaHdpWCdaqhaaWcbaGaam yzaaqaaiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaGc baGaamywaaaacqGHsisldaWcaaqaaiaaiodacaWGfbaabaGaaGOmai aadMfacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcaaaGaeuiLdqKa eqyTdu2aaSbaaSqaaiaadwgaaeqaaOGaeyOeI0YaaeWaaeaacaaIXa Gaey4kaSYaaSaaaeaacqaH1oqzdaWgaaWcbaGaamyzaaqabaGccqGH RaWkcqqHuoarcqaH1oqzdaWgaaWcbaGaamyzaaqabaaakeaacqaH1o qzdaWgaaWcbaGaaGimaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaaIXaGaai4laiaad6gaaaGcdaqadaqaamaalaaabaGaeuiLdq KaeqyTdu2aaSbaaSqaaiaadwgaaeqaaaGcbaGaeuiLdqKaamiDaiqb ew7aLzaacaWaaSbaaSqaaiaaicdaaeqaaOGaciyzaiaacIhacaGGWb GaaiikaiabgkHiTiaadgfacaGGVaGaam4AaiaadsfacaGGPaaaaaGa ayjkaiaawMcaamaaCaaaleqabaGaaGymaiaac+cacaWGTbaaaOGaey ypa0JaaGimaaaa@6EF8@

 

4. The stress at the end of the increment then follows as

σ ij (n+1) = 1 3E 2(1+ν) σ e *(n+1) Δ ε e S ij *(n+1) + σ kk (n) δ ij + E 3(12ν) Δ ε kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9maa bmaabaGaaGymaiabgkHiTmaalaaabaGaaG4maiaadweaaeaacaaIYa GaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGaeq4Wdm3aa0baaSqa aiaadwgacaaMc8oabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymai aacMcaaaaaaOGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaaGc caGLOaGaayzkaaGaam4uamaaDaaaleaacaWGPbGaamOAaaqaaiaacQ cacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaey4kaSIaeq4W dm3aa0baaSqaaiaadUgacaWGRbaabaGaaiikaiaad6gacaGGPaaaaO GaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaakiabgUcaRmaalaaa baGaamyraaqaaiaaiodacaGGOaGaaGymaiabgkHiTiaaikdacqaH9o GBcaGGPaaaaiabfs5aejabew7aLnaaBaaaleaacaWGRbGaam4Aaaqa baGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@740C@

 

 

Derivation These expressions can be derived as follows:

 

1. Separate the stress σ ij (n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaeq4WdmNcdaqhaaWcbaGaamyAai aadQgaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@3968@  into deviatoric and hydrostatic components as follows

p (n+1) = σ kk (n+1) /3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaCaaaleqabaGaaiikaiaad6 gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9iabeo8aZnaaDaaaleaa caWGRbGaam4AaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaa GccaGGVaGaaG4maaaa@402D@           S ij (n+1) = σ ij (n+1) p (n+1) δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccqGH9aqpcqaH dpWCdaqhaaWcbaGaamyAaiaadQgaaeaacaGGOaGaamOBaiabgUcaRi aaigdacaGGPaaaaOGaeyOeI0IaamiCamaaCaaaleqabaGaaiikaiaa d6gacqGHRaWkcaaIXaGaaiykaaaakiabes7aKnaaBaaaleaacaWGPb GaamOAaaqabaaaaa@4A2A@

 

2. The elastic stress-strain equation gives the hydrostatic part of the stress a time t n+1 = t n +Δt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGUbGaey4kaS IaaGymaaqabaGccqGH9aqpcaWG0bWaaSbaaSqaaiaad6gaaeqaaOGa ey4kaSIaeuiLdqKaamiDaaaa@3B07@  as

p (n+1) = p (n) + E 3(12ν) Δ ε kk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaCaaaleqabaGaaiikaiaad6 gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9iaadchadaahaaWcbeqa aiaacIcacaWGUbGaaiykaaaakiabgUcaRmaalaaabaGaamyraaqaai aaiodacaGGOaGaaGymaiabgkHiTiaaikdacqaH9oGBcaGGPaaaaiab fs5aejabew7aLnaaBaaaleaacaWGRbGaam4Aaaqabaaaaa@4779@

 

3. The deviatoric stress at the end of the increment can be expressed in terms of the total deviatoric strain increment Δ e ij =Δ ε ij Δ ε kk δ ij /3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyzamaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpcqqHuoarcqaH1oqzdaWgaaWcbaGaamyA aiaadQgaaeqaaOGaeyOeI0IaeuiLdqKaeqyTdu2aaSbaaSqaaiaadU gacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGc caGGVaGaaG4maaaa@46A0@  and the increment in plastic strain Δ ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdu2aa0baaSqaaiaadM gacaWGQbaabaGaamiCaaaaaaa@36EB@  by writing

S ij (n+1) = S ij (n) + E 1+ν Δ e ij e = S ij (n) + E 1+ν Δ e ij Δ ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccqGH9aqpcaWG tbWaa0baaSqaaiaadMgacaWGQbaabaGaaiikaiaad6gacaGGPaaaaO Gaey4kaSYaaSaaaeaacaWGfbaabaGaaGymaiabgUcaRiabe27aUbaa cqqHuoarcaWGLbWaa0baaSqaaiaadMgacaWGQbaabaGaamyzaaaaja aWcqGH9aqpkiaadofadaqhaaWcbaGaamyAaiaadQgaaeaacaGGOaGa amOBaiaacMcaaaGccqGHRaWkdaWcaaqaaiaadweaaeaacaaIXaGaey 4kaSIaeqyVd4gaamaabmaabaGaeuiLdqKaamyzamaaBaaaleaacaWG PbGaamOAaaqabaGccqGHsislcqqHuoarcqaH1oqzdaqhaaWcbaGaam yAaiaadQgaaeaacaWGWbaaaaGccaGLOaGaayzkaaaaaa@6158@

 

4. To calculate the plastic strain increment Δ e ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyzamaaDaaaleaacaWGPb GaamOAaaqaaiaadchaaaaaaa@362F@  we need to integrate the expression for plastic strain rate with respect to time over the interval Δt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiDaaaa@333E@ .  There are many advantages to using an implicit, or backward-Euler time integration scheme for this purpose, as follows

Δ ε ij p =Δ ε e 3 2 S ij (n+1) σ e (n+1) Δ ε e =Δt ε ˙ 0 exp(Q/kT) σ e (n+1) σ 0 (n+1) m σ 0 (n+1) =Y 1+ ε e (n) +Δ ε e ε 0 1/n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaacqqHuoarcqaH1oqzdaqhaaWcba GaamyAaiaadQgaaeaacaWGWbaaaOGaeyypa0JaeuiLdqKaeqyTdu2a aSbaaSqaaiaadwgaaeqaaOWaaSaaaeaacaaIZaaabaGaaGOmaaaada WcaaqaaiaadofadaqhaaWcbaGaamyAaiaadQgaaeaacaGGOaGaamOB aiabgUcaRiaaigdacaGGPaaaaaGcbaGaeq4Wdm3aa0baaSqaaiaadw gaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaakiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8oabaGaeu iLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaOGaeyypa0JaeuiLdqKa amiDaiqbew7aLzaacaWaaSbaaSqaaiaaicdaaeqaaOGaciyzaiaacI hacaGGWbGaaiikaiabgkHiTiaadgfacaGGVaGaam4AaiaadsfacaGG PaWaaeWaaeaadaWcaaqaaiabeo8aZnaaDaaaleaacaWGLbaabaGaai ikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaOqaaiabeo8aZnaaDaaa leaacaaIWaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaa aakiaawIcacaGLPaaadaahaaWcbeqaaiaad2gaaaGccaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdp WCdaqhaaWcbaGaaGimaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaa cMcaaaGccqGH9aqpcaWGzbWaaeWaaeaacaaIXaGaey4kaSYaaSaaae aacqaH1oqzdaqhaaWcbaGaamyzaaqaaiaacIcacaWGUbGaaiykaaaa kiabgUcaRiabfs5aejabew7aLnaaBaaaleaacaWGLbaabeaaaOqaai abew7aLnaaBaaaleaacaaIWaaabeaaaaaakiaawIcacaGLPaaadaah aaWcbeqaaiaaigdacaGGVaGaamOBaaaaaaaa@A376@

This is an implicit scheme, because the strain rate is computed based on values of stress and state variables at the end of the time interval.  It is a bit more cumbersome to deal with than a simple forward-Euler (explicit) scheme, in which the strain rate depends on stresses and state at the start of the increment, but the advantages far outweigh the additional complexity.  The implicit scheme can be shown to be unconditionally stable (you can take large timesteps without encountering numerical instabilities) and also leads to symmetric material tangents, as shown in the next section.

 

5. The problem is now algebraic MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@328C@  we need to solve for S ij (n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaa@37AA@  and accumulated plastic strain ε e (n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaadwgaaeaaca GGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@3786@ .  To this end, define

S ij *(n+1) = S ij (n) + E 1+ν Δ e ij σ e *(n+1) = 3 2 S ij *(n+1) S ij *(n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaeyyp a0Jaam4uamaaDaaaleaacaWGPbGaamOAaaqaaiaacIcacaWGUbGaai ykaaaakiabgUcaRmaalaaabaGaamyraaqaaiaaigdacqGHRaWkcqaH 9oGBaaGaeuiLdqKaamyzamaaBaaaleaacaWGPbGaamOAaaqabaqcaa SaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8Uaeq4WdmNcdaqhaaWcbaGaamyzaiaaykW7aeaacaGG QaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9maaka aabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaWGtbWaa0baaSqaaiaa dMgacaWGQbaabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaacM caaaGccaWGtbWaa0baaSqaaiaadMgacaWGQbaabaGaaiOkaiaacIca caWGUbGaey4kaSIaaGymaiaacMcaaaaabeaaaaa@7F44@

( S ij *(n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@3858@  is the deviatoric stress that you would get in an elastic solid).

 

6. Now assume that the actual stress will be S ij (n+1) =β S ij *(n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccqGH9aqpcqaH YoGycaWGtbWaa0baaSqaaiaadMgacaWGQbaabaGaaiOkaiaacIcaca WGUbGaey4kaSIaaGymaiaacMcaaaaaaa@41D4@ , where β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@  is a numerical factor to be determined.  Substitute into the expression for S ij (n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaa@37AA@  and eliminate Δ ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdu2aa0baaSqaaiaadM gacaWGQbaabaGaamiCaaaaaaa@36EB@  to see that

β S ij *(n+1) = S ij *(n+1) Δ ε e 3E 2(1+ν) S ij *(n+1) σ e *(n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaam4uamaaDaaaleaacaWGPb GaamOAaaqaaiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaa aOGaeyypa0Jaam4uamaaDaaaleaacaWGPbGaamOAaaqaaiaacQcaca GGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaeyOeI0IaeuiLdqKa eqyTdu2aaSbaaSqaaiaadwgaaeqaaOWaaSaaaeaacaaIZaGaamyraa qaaiaaikdacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcaaaWaaSaa aeaacaWGtbWaa0baaSqaaiaadMgacaWGQbaabaGaaiOkaiaacIcaca WGUbGaey4kaSIaaGymaiaacMcaaaaakeaacqaHdpWCdaqhaaWcbaGa amyzaiaaykW7aeaacaGGQaGaaiikaiaad6gacqGHRaWkcaaIXaGaai ykaaaaaaaaaa@5F36@

 

7. Contracting both sides of this equation with S ij *(n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@3858@  shows that

β=1 3E 2(1+ν) σ e *(n+1) Δ ε e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyypa0JaaGymaiabgkHiTm aalaaabaGaaG4maiaadweaaeaacaaIYaGaaiikaiaaigdacqGHRaWk cqaH9oGBcaGGPaGaeq4Wdm3aa0baaSqaaiaadwgacaaMc8oabaGaai OkaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaOGaeuiLdqKa eqyTdu2aaSbaaSqaaiaadwgaaeqaaaaa@4958@

 

8. Finally, note that β= σ e (n+1) / σ e *(n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyypa0Jaeq4Wdm3aa0baaS qaaiaadwgaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGa ai4laiabeo8aZnaaDaaaleaacaWGLbGaaGPaVdqaaiaacQcacaGGOa GaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@4402@  and eliminate σ e (n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadwgaaeaaca GGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@37A2@  and σ 0 (n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaaicdaaeaaca GGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@3772@  from the remaining equations in step (4) to get

σ e *(n+1) Y 3E 2Y(1+ν) Δ ε e 1+ ε e +Δ ε e ε 0 1/n Δ ε e Δt ε ˙ 0 exp(Q/kT) 1/m =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqaHdpWCdaqhaaWcbaGaam yzaaqaaiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaGc baGaamywaaaacqGHsisldaWcaaqaaiaaiodacaWGfbaabaGaaGOmai aadMfacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcaaaGaeuiLdqKa eqyTdu2aaSbaaSqaaiaadwgaaeqaaOGaeyOeI0YaaeWaaeaacaaIXa Gaey4kaSYaaSaaaeaacqaH1oqzdaWgaaWcbaGaamyzaaqabaGccqGH RaWkcqqHuoarcqaH1oqzdaWgaaWcbaGaamyzaaqabaaakeaacqaH1o qzdaWgaaWcbaGaaGimaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaaIXaGaai4laiaad6gaaaGcdaqadaqaamaalaaabaGaeuiLdq KaeqyTdu2aaSbaaSqaaiaadwgaaeqaaaGcbaGaeuiLdqKaamiDaiqb ew7aLzaacaWaaSbaaSqaaiaaicdaaeqaaOGaciyzaiaacIhacaGGWb GaaiikaiabgkHiTiaadgfacaGGVaGaam4AaiaadsfacaGGPaaaaaGa ayjkaiaawMcaamaaCaaaleqabaGaaGymaiaac+cacaWGTbaaaOGaey ypa0JaaGimaaaa@6EF8@

 

9. The deviatoric stress at the end of the increment follows by substituting the result of (8) into (7) and recalling that S ij (n+1) =β S ij *(n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccqGH9aqpcqaH YoGycaWGtbWaa0baaSqaaiaadMgacaWGQbaabaGaaiOkaiaacIcaca WGUbGaey4kaSIaaGymaiaacMcaaaaaaa@41D4@ , so

S ij (n+1) = 1 3E 2(1+ν) σ e *(n+1) Δ ε e S ij (n) + E 1+ν Δ e ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccqGH9aqpdaqa daqaaiaaigdacqGHsisldaWcaaqaaiaaiodacaWGfbaabaGaaGOmai aacIcacaaIXaGaey4kaSIaeqyVd4Maaiykaiabeo8aZnaaDaaaleaa caWGLbGaaGPaVdqaaiaacQcacaGGOaGaamOBaiabgUcaRiaaigdaca GGPaaaaaaakiabfs5aejabew7aLnaaBaaaleaacaWGLbaabeaaaOGa ayjkaiaawMcaamaabmaabaGaam4uamaaDaaaleaacaWGPbGaamOAaa qaaiaacIcacaWGUbGaaiykaaaakiabgUcaRmaalaaabaGaamyraaqa aiaaigdacqGHRaWkcqaH9oGBaaGaeuiLdqKaamyzamaaBaaaleaaca WGPbGaamOAaaqabaaakiaawIcacaGLPaaaaaa@6054@

 

10. Finally, the formula for stress follows by combining the deviatoric stress in (9) with the hydrostatic stress in (2)

 

 

 

 

8.5.5 Material Tangent Stiffness

 

Since the stress-strain relation is nonlinear, the virtual work equation will need to be solved using Newton-Raphson iteration.  For this purpose we must compute the material tangent σ ij /Δ ε kl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcqqHuoarcqaH1oqzdaWgaaWc baGaam4AaiaadYgaaeqaaaaa@3D4E@ .  The result is

C ijkl ep = βE (1+ν) 1 2 δ ik δ jl + δ jk δ il 1 3 δ ij δ kl + E (1+ν) 9E Δ ε e 1/γ 4(1+ν) σ e * S ij * σ e * S kl * σ e * + E 3(12ν) δ ij δ kl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGdbWaa0baaSqaaiaadMgaca WGQbGaam4AaiaadYgaaeaacaWGLbGaamiCaaaakiabg2da9maalaaa baGaeqOSdiMaamyraaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4Maai ykaaaadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaa cqaH0oazdaWgaaWcbaGaamyAaiaadUgaaeqaaOGaeqiTdq2aaSbaaS qaaiaadQgacaWGSbaabeaakiabgUcaRiabes7aKnaaBaaaleaacaWG QbGaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadYgaaeqaaa GccaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaG4maaaa cqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeqiTdq2aaSbaaS qaaiaadUgacaWGSbaabeaaaOGaayjkaiaawMcaaaqaaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8Uaey4kaSYaaSaaaeaacaWGfbaabaGaaiikaiaaigdacqGHRa WkcqaH9oGBcaGGPaaaamaalaaabaGaaGyoaiaadweadaqadaqaaiab fs5aejabew7aLnaaBaaaleaacaWGLbaabeaakiabgkHiTiaaigdaca GGVaGaeq4SdCgacaGLOaGaayzkaaaabaGaaGinaiaacIcacaaIXaGa ey4kaSIaeqyVd4Maaiykaiabeo8aZnaaDaaaleaacaWGLbaabaGaai OkaaaaaaGcdaWcaaqaaiaadofadaqhaaWcbaGaamyAaiaadQgaaeaa caGGQaaaaaGcbaGaeq4Wdm3aa0baaSqaaiaadwgaaeaacaGGQaaaaa aakmaalaaabaGaam4uamaaDaaaleaacaWGRbGaamiBaaqaaiaacQca aaaakeaacqaHdpWCdaqhaaWcbaGaamyzaiaaykW7aeaacaGGQaaaaa aakiabgUcaRmaalaaabaGaamyraaqaaiaaiodacaGGOaGaaGymaiab gkHiTiaaikdacqaH9oGBcaGGPaaaaiabes7aKnaaBaaaleaacaWGPb GaamOAaaqabaGccqaH0oazdaWgaaWcbaGaam4AaiaadYgaaeqaaaaa aa@CE1A@

where

γ= 3E 2(1+ν) σ e * +β 1 n( ε 0 + ε e +Δ ε e ) + 1 mΔ ε e β= 1 3E 2(1+ν) σ e *(n+1) Δ ε e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCMaeyypa0ZaaSaaaeaacaaIZa GaamyraaqaaiaaikdacaGGOaGaaGymaiabgUcaRiabe27aUjaacMca cqaHdpWCdaqhaaWcbaGaamyzaaqaaiaacQcaaaaaaOGaey4kaSIaeq OSdi2aaiWaaeaadaqadaqaamaalaaabaGaaGymaaqaaiaad6gacaGG OaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaeqyTdu2aaS baaSqaaiaadwgaaeqaaOGaey4kaSIaeuiLdqKaeqyTdu2aaSbaaSqa aiaadwgaaeqaaOGaaiykaaaacqGHRaWkdaWcaaqaaiaaigdaaeaaca WGTbGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaaaaaOGaayjk aiaawMcaaaGaay5Eaiaaw2haaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabek7aIjabg2da9iaaykW7daqadaqaaiaaigdacqGH sisldaWcaaqaaiaaiodacaWGfbaabaGaaGOmaiaacIcacaaIXaGaey 4kaSIaeqyVd4Maaiykaiabeo8aZnaaDaaaleaacaWGLbGaaGPaVdqa aiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaakiabfs 5aejabew7aLnaaBaaaleaacaWGLbaabeaaaOGaayjkaiaawMcaaiaa ykW7aaa@7FF2@

The equivalent matrix form is

D= βE 2(1+ν) 2 0 2 2 1 1 0 1 + E (1+ν) 9E Δ ε e 1/γ 4(1+ν) σ e * 1 σ e *2 s * s * + 1 3 E (12ν) βE (1+ν) i i ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHebGaeyypa0ZaaSaaaeaacq aHYoGycaWGfbaabaGaaGOmaiaacIcacaaIXaGaey4kaSIaeqyVd4Ma aiykaaaadaWadaqaauaabeqagyaaaaaabaGaaGOmaaqaaaqaaaqaaa qaaaqaaiaaicdaaeaaaeaacaaIYaaabaaabaaabaaabaaabaaabaaa baGaaGOmaaqaaaqaaaqaaaqaaaqaaaqaaaqaaiaaigdaaeaaaeaaae aaaeaaaeaaaeaaaeaacaaIXaaabaaabaGaaGimaaqaaaqaaaqaaaqa aaqaaiaaigdaaaaacaGLBbGaayzxaaGaey4kaSYaaSaaaeaacaWGfb aabaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaaaamaalaaabaGa aGyoaiaadweadaqadaqaaiabfs5aejabew7aLnaaBaaaleaacaWGLb aabeaakiabgkHiTiaaigdacaGGVaGaeq4SdCgacaGLOaGaayzkaaaa baGaaGinaiaacIcacaaIXaGaey4kaSIaeqyVd4Maaiykaiabeo8aZn aaDaaaleaacaWGLbaabaGaaiOkaaaaaaGcdaWcaaqaaiaaigdaaeaa cqaHdpWCdaqhaaWcbaGaamyzaaqaaiaacQcacaaIYaaaaaaakiaaho hadaahaaWcbeqaaiaacQcaaaGccqGHxkcXcaWHZbWaaWbaaSqabeaa caGGQaaaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGHRaWkdaWcaaqaaiaaigdaaeaacaaIZaaaamaadmaaba WaaSaaaeaacaWGfbaabaGaaiikaiaaigdacqGHsislcaaIYaGaeqyV d4MaaiykaaaacqGHsisldaWcaaqaaiabek7aIjaadweaaeaacaGGOa GaaGymaiabgUcaRiabe27aUjaacMcaaaaacaGLBbGaayzxaaGaaCyA aiabgEPiepaamaaabaGaaCyAaaaaaaaa@FA70@

where s * =[ S 11 * , S 22 * , S 33 * , S 12 * , S 13 * , S 23 * ]i=[1,1,1,0,0,0] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4CamaaCaaaleqabaGaaiOkaaaaki abg2da9iaacUfacaWGtbWaa0baaSqaaiaaigdacaaIXaaabaGaaiOk aaaakiaacYcacaWGtbWaa0baaSqaaiaaikdacaaIYaaabaGaaiOkaa aakiaacYcacaWGtbWaa0baaSqaaiaaiodacaaIZaaabaGaaiOkaaaa kiaacYcacaWGtbWaa0baaSqaaiaaigdacaaIYaaabaGaaiOkaaaaki aacYcacaWGtbWaa0baaSqaaiaaigdacaaIZaaabaGaaiOkaaaakiaa cYcacaWGtbWaa0baaSqaaiaaikdacaaIZaaabaGaaiOkaaaakiaac2 facaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahMgacqGH9a qpcaGGBbGaaGymaiaacYcacaaIXaGaaiilaiaaigdacaGGSaGaaGim aiaacYcacaaIWaGaaiilaiaaicdacaGGDbaaaa@6D56@

 

 

Derivation As always calculating the material tangent stiffness is a tiresome algebraic exercise.  We have that

σ ij (n+1) =β S ij *(n+1) + 1 3 σ kk (n) δ ij + E 3(12ν) Δ ε kk δ ij β= 1 3E 2(1+ν) σ e *(n+1) Δ ε e S ij *(n+1) = S ij (n) + E 1+ν Δ e ij σ e *(n+1) = 3 2 S ij *(n+1) S ij *(n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaqhaaWcbaGaamyAai aadQgaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaeyyp a0JaeqOSdiMaam4uamaaDaaaleaacaWGPbGaamOAaaqaaiaacQcaca GGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaey4kaSYaaSaaaeaa caaIXaaabaGaaG4maaaacqaHdpWCdaqhaaWcbaGaam4AaiaadUgaae aacaGGOaGaamOBaiaacMcaaaGccqaH0oazdaWgaaWcbaGaamyAaiaa dQgaaeqaaOGaey4kaSYaaSaaaeaacaWGfbaabaGaaG4maiaacIcaca aIXaGaeyOeI0IaaGOmaiabe27aUjaacMcaaaGaeuiLdqKaeqyTdu2a aSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGPb GaamOAaaqabaaakeaacqaHYoGycqGH9aqpcaaMc8+aaeWaaeaacaaI XaGaeyOeI0YaaSaaaeaacaaIZaGaamyraaqaaiaaikdacaGGOaGaaG ymaiabgUcaRiabe27aUjaacMcacqaHdpWCdaqhaaWcbaGaamyzaiaa ykW7aeaacaGGQaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaa GccqqHuoarcqaH1oqzdaWgaaWcbaGaamyzaaqabaaakiaawIcacaGL PaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8oabaGaam4uamaaDaaaleaacaWGPbGaamOAaaqa aiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaeyypa0 JaaGPaVpaabmaabaGaam4uamaaDaaaleaacaWGPbGaamOAaaqaaiaa cIcacaWGUbGaaiykaaaakiabgUcaRmaalaaabaGaamyraaqaaiaaig dacqGHRaWkcqaH9oGBaaGaeuiLdqKaamyzamaaBaaaleaacaWGPbGa amOAaaqabaaakiaawIcacaGLPaaacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aa0baaSqaaiaadwgacaaMc8oa baGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccqGH9a qpdaGcaaqaamaalaaabaGaaG4maaqaaiaaikdaaaGaam4uamaaDaaa leaacaWGPbGaamOAaaqaaiaacQcacaGGOaGaamOBaiabgUcaRiaaig dacaGGPaaaaOGaam4uamaaDaaaleaacaWGPbGaamOAaaqaaiaacQca caGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaqabaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVdaaaa@D25F@

Consequently,

d σ ij (n+1) =β E 1+ν dΔ e ij 3E 2(1+ν) S ij *(n+1) σ e *(n+1) dΔ ε e + 3EΔ ε e 2(1+ν) S ij *(n+1) σ e *(n+1) d σ e *(n+1) σ e *(n+1) + E 3(12ν) δ ij dΔ ε kk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGKbGaeq4Wdm3aa0baaSqaai aadMgacaWGQbaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaa kiabg2da9iabek7aInaalaaabaGaamyraaqaaiaaigdacqGHRaWkcq aH9oGBaaGaamizaiabfs5aejaadwgadaWgaaWcbaGaamyAaiaadQga aeqaaOGaeyOeI0YaaSaaaeaacaaIZaGaamyraaqaaiaaikdacaGGOa GaaGymaiabgUcaRiabe27aUjaacMcaaaWaaSaaaeaacaWGtbWaa0ba aSqaaiaadMgacaWGQbaabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaG ymaiaacMcaaaaakeaacqaHdpWCdaqhaaWcbaGaamyzaiaaykW7aeaa caGGQaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaaGccaWGKb GaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaaGcbaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8Uaey4kaSYaaSaaaeaacaaIZaGaamyrai abfs5aejabew7aLnaaBaaaleaacaWGLbaabeaaaOqaaiaaikdacaGG OaGaaGymaiabgUcaRiabe27aUjaacMcaaaWaaSaaaeaacaWGtbWaa0 baaSqaaiaadMgacaWGQbaabaGaaiOkaiaacIcacaWGUbGaey4kaSIa aGymaiaacMcaaaaakeaacqaHdpWCdaqhaaWcbaGaamyzaiaaykW7ae aacaGGQaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaaGcdaWc aaqaaiaadsgacqaHdpWCdaqhaaWcbaGaamyzaiaaykW7aeaacaGGQa Gaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaOqaaiabeo8aZnaa DaaaleaacaWGLbGaaGPaVdqaaiaacQcacaGGOaGaamOBaiabgUcaRi aaigdacaGGPaaaaaaakiabgUcaRmaalaaabaGaamyraaqaaiaaioda caGGOaGaaGymaiabgkHiTiaaikdacqaH9oGBcaGGPaaaaiabes7aKn aaBaaaleaacaWGPbGaamOAaaqabaGccaWGKbGaeuiLdqKaeqyTdu2a aSbaaSqaaiaadUgacaWGRbaabeaaaaaa@C50B@

where

d σ e *(n+1) = σ e *(n+1) Δ ε ij dΔ ε ij = 3E 2(1+ν) S ij *(n+1) dΔ ε ij σ e *(n+1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeo8aZnaaDaaaleaacaWGLb GaaGPaVdqaaiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaa aOGaeyypa0ZaaSaaaeaacqGHciITcqaHdpWCdaqhaaWcbaGaamyzai aaykW7aeaacaGGQaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaa aOqaaiabgkGi2kabfs5aejabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaaaaOGaamizaiabfs5aejabew7aLnaaBaaaleaacaWGPbGaamOA aaqabaGccqGH9aqpdaWcaaqaaiaaiodacaWGfbaabaGaaGOmaiaacI cacaaIXaGaey4kaSIaeqyVd4MaaiykaaaadaWcaaqaaiaadofadaqh aaWcbaGaamyAaiaadQgaaeaacaGGQaGaaiikaiaad6gacqGHRaWkca aIXaGaaiykaaaakiaadsgacqqHuoarcqaH1oqzdaWgaaWcbaGaamyA aiaadQgaaeqaaaGcbaGaeq4Wdm3aa0baaSqaaiaadwgacaaMc8oaba GaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaaaa@717E@

and dΔ ε e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabfs5aejabew7aLnaaBaaale aacaWGLbaabeaaaaa@35EB@  can be computed by differentiating the nonlinear equation for Δ ε e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadw gaaeqaaaaa@3502@  as

d σ e *(n+1) Y cdΔ ε e =0 c=λ+ 1+ ε e +Δ ε e ε 0 1/n Δ ε e Δt ε ˙ 0 exp(Q/kT) 1/m 1 n( ε 0 + ε e +Δ ε e ) + 1 mΔ ε e λ= 3E 2(1+ν)Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgacqaHdpWCda qhaaWcbaGaamyzaiaaykW7aeaacaGGQaGaaiikaiaad6gacqGHRaWk caaIXaGaaiykaaaaaOqaaiaadMfaaaGaeyOeI0Iaam4yaiaadsgacq qHuoarcqaH1oqzdaWgaaWcbaGaamyzaaqabaGccqGH9aqpcaaIWaaa baGaam4yaiabg2da9iabeU7aSjaaykW7cqGHRaWkdaqadaqaaiaaig dacqGHRaWkdaWcaaqaaiabew7aLnaaBaaaleaacaWGLbaabeaakiab gUcaRiabfs5aejabew7aLnaaBaaaleaacaWGLbaabeaaaOqaaiabew 7aLnaaBaaaleaacaaIWaaabeaaaaaakiaawIcacaGLPaaadaahaaWc beqaaiaaigdacaGGVaGaamOBaaaakmaabmaabaWaaSaaaeaacqqHuo arcqaH1oqzdaWgaaWcbaGaamyzaaqabaaakeaacqqHuoarcaWG0bGa fqyTduMbaiaadaWgaaWcbaGaaGimaaqabaGcciGGLbGaaiiEaiaacc hacaGGOaGaeyOeI0Iaamyuaiaac+cacaWGRbGaamivaiaacMcaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaad2gaaaGcda qadaqaamaalaaabaGaaGymaaqaaiaad6gacaGGOaGaeqyTdu2aaSba aSqaaiaaicdaaeqaaOGaey4kaSIaeqyTdu2aaSbaaSqaaiaadwgaae qaaOGaey4kaSIaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaOGa aiykaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbGaeuiLdqKaeq yTdu2aaSbaaSqaaiaadwgaaeqaaaaaaOGaayjkaiaawMcaaaqaaiab eU7aSjabg2da9maalaaabaGaaG4maiaadweaaeaacaaIYaGaaiikai aaigdacqGHRaWkcqaH9oGBcaGGPaGaamywaaaaaaaa@91DC@

This expression can be simplified by recalling that

σ e *(n+1) Y 3E 2Y(1+ν) Δ ε e 1+ ε e +Δ ε e ε 0 1/n Δ ε e Δt ε ˙ 0 exp(Q/kT) 1/m =0 1+ ε e +Δ ε e ε 0 1/n Δ ε e Δt ε ˙ 0 exp(Q/kT) 1/m = σ e *(n+1) Y 3E 2Y(1+ν) Δ ε e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabeo8aZnaaDaaale aacaWGLbaabaGaaiOkaiaacIcacaWGUbGaey4kaSIaaGymaiaacMca aaaakeaacaWGzbaaaiabgkHiTmaalaaabaGaaG4maiaadweaaeaaca aIYaGaamywaiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaaaacqqH uoarcqaH1oqzdaWgaaWcbaGaamyzaaqabaGccqGHsisldaqadaqaai aaigdacqGHRaWkdaWcaaqaaiabew7aLnaaBaaaleaacaWGLbaabeaa kiabgUcaRiabfs5aejabew7aLnaaBaaaleaacaWGLbaabeaaaOqaai abew7aLnaaBaaaleaacaaIWaaabeaaaaaakiaawIcacaGLPaaadaah aaWcbeqaaiaaigdacaGGVaGaamOBaaaakmaabmaabaWaaSaaaeaacq qHuoarcqaH1oqzdaWgaaWcbaGaamyzaaqabaaakeaacqqHuoarcaWG 0bGafqyTduMbaiaadaWgaaWcbaGaaGimaaqabaGcciGGLbGaaiiEai aacchacaGGOaGaeyOeI0Iaamyuaiaac+cacaWGRbGaamivaiaacMca aaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaad2gaaa GccqGH9aqpcaaIWaaabaGaeyO0H49aaeWaaeaacaaIXaGaey4kaSYa aSaaaeaacqaH1oqzdaWgaaWcbaGaamyzaaqabaGccqGHRaWkcqqHuo arcqaH1oqzdaWgaaWcbaGaamyzaaqabaaakeaacqaH1oqzdaWgaaWc baGaaGimaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIXa Gaai4laiaad6gaaaGcdaqadaqaamaalaaabaGaeuiLdqKaeqyTdu2a aSbaaSqaaiaadwgaaeqaaaGcbaGaeuiLdqKaamiDaiqbew7aLzaaca WaaSbaaSqaaiaaicdaaeqaaOGaciyzaiaacIhacaGGWbGaaiikaiab gkHiTiaadgfacaGGVaGaam4AaiaadsfacaGGPaaaaaGaayjkaiaawM caamaaCaaaleqabaGaaGymaiaac+cacaWGTbaaaOGaeyypa0ZaaSaa aeaacqaHdpWCdaqhaaWcbaGaamyzaaqaaiaacQcacaGGOaGaamOBai abgUcaRiaaigdacaGGPaaaaaGcbaGaamywaaaacqGHsisldaWcaaqa aiaaiodacaWGfbaabaGaaGOmaiaadMfacaGGOaGaaGymaiabgUcaRi abe27aUjaacMcaaaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqa aaaaaa@ADC4@

so that

d σ e *(n+1) Y λ+ σ e *(n+1) Y λΔ ε e 1 n( ε 0 + ε e +Δ ε e ) + 1 mΔ ε e dΔ ε e =0 λ= 3E 2(1+ν)Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgacqaHdpWCda qhaaWcbaGaamyzaiaaykW7aeaacaGGQaGaaiikaiaad6gacqGHRaWk caaIXaGaaiykaaaaaOqaaiaadMfaaaGaeyOeI0YaaiWaaeaacqaH7o aBcqGHRaWkdaqadaqaamaalaaabaGaeq4Wdm3aa0baaSqaaiaadwga aeaacaGGQaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaOqaai aadMfaaaGaeyOeI0Iaeq4UdWMaeuiLdqKaeqyTdu2aaSbaaSqaaiaa dwgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiaaigdaae aacaWGUbGaaiikaiabew7aLnaaBaaaleaacaaIWaaabeaakiabgUca Riabew7aLnaaBaaaleaacaWGLbaabeaakiabgUcaRiabfs5aejabew 7aLnaaBaaaleaacaWGLbaabeaakiaacMcaaaGaey4kaSYaaSaaaeaa caaIXaaabaGaamyBaiabfs5aejabew7aLnaaBaaaleaacaWGLbaabe aaaaaakiaawIcacaGLPaaaaiaawUhacaGL9baacaWGKbGaeuiLdqKa eqyTdu2aaSbaaSqaaiaadwgaaeqaaOGaeyypa0JaaGimaaqaaiabeU 7aSjabg2da9maalaaabaGaaG4maiaadweaaeaacaaIYaGaaiikaiaa igdacqGHRaWkcqaH9oGBcaGGPaGaamywaaaaaaaa@7A61@

Finally noting that

dΔ e ij dΔ ε kl = 1 2 δ ik δ jl + δ jk δ il 1 3 δ ij δ kl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeuiLdqKaamyzam aaBaaaleaacaWGPbGaamOAaaqabaaakeaacaWGKbGaeuiLdqKaeqyT du2aaSbaaSqaaiaadUgacaWGSbaabeaaaaGccqGH9aqpdaWcaaqaai aaigdaaeaacaaIYaaaamaabmaabaGaeqiTdq2aaSbaaSqaaiaadMga caWGRbaabeaakiabes7aKnaaBaaaleaacaWGQbGaamiBaaqabaGccq GHRaWkcqaH0oazdaWgaaWcbaGaamOAaiaadUgaaeqaaOGaeqiTdq2a aSbaaSqaaiaadMgacaWGSbaabeaaaOGaayjkaiaawMcaaiabgkHiTm aalaaabaGaaGymaaqaaiaaiodaaaGaeqiTdq2aaSbaaSqaaiaadMga caWGQbaabeaakiabes7aKnaaBaaaleaacaWGRbGaamiBaaqabaaaaa@5A07@

we can collect together all the relevant terms to show that

C ijkl ep = βE (1+ν) 1 2 δ ik δ jl + δ jk δ il 1 3 δ ij δ kl + E (1+ν) 9E Δ ε e 1/γ 4(1+ν) σ e * S ij * σ e * S kl * σ e * + E 3(12ν) δ ij δ kl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGdbWaa0baaSqaaiaadMgaca WGQbGaam4AaiaadYgaaeaacaWGLbGaamiCaaaakiabg2da9maalaaa baGaeqOSdiMaamyraaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4Maai ykaaaadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaa cqaH0oazdaWgaaWcbaGaamyAaiaadUgaaeqaaOGaeqiTdq2aaSbaaS qaaiaadQgacaWGSbaabeaakiabgUcaRiabes7aKnaaBaaaleaacaWG QbGaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaadYgaaeqaaa GccaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaG4maaaa cqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeqiTdq2aaSbaaS qaaiaadUgacaWGSbaabeaaaOGaayjkaiaawMcaaaqaaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8Uaey4kaSYaaSaaaeaacaWGfbaabaGaaiikaiaaigdacqGHRa WkcqaH9oGBcaGGPaaaamaalaaabaGaaGyoaiaadweadaqadaqaaiab fs5aejabew7aLnaaBaaaleaacaWGLbaabeaakiabgkHiTiaaigdaca GGVaGaeq4SdCgacaGLOaGaayzkaaaabaGaaGinaiaacIcacaaIXaGa ey4kaSIaeqyVd4Maaiykaiabeo8aZnaaDaaaleaacaWGLbaabaGaai OkaaaaaaGcdaWcaaqaaiaadofadaqhaaWcbaGaamyAaiaadQgaaeaa caGGQaaaaaGcbaGaeq4Wdm3aa0baaSqaaiaadwgaaeaacaGGQaaaaa aakmaalaaabaGaam4uamaaDaaaleaacaWGRbGaamiBaaqaaiaacQca aaaakeaacqaHdpWCdaqhaaWcbaGaamyzaiaaykW7aeaacaGGQaaaaa aakiabgUcaRmaalaaabaGaamyraaqaaiaaiodacaGGOaGaaGymaiab gkHiTiaaikdacqaH9oGBcaGGPaaaaiabes7aKnaaBaaaleaacaWGPb GaamOAaaqabaGccqaH0oazdaWgaaWcbaGaam4AaiaadYgaaeqaaaaa aa@CE1A@

where

γ= 3E 2(1+ν) σ e * +β 1 n( ε 0 + ε e +Δ ε e ) + 1 mΔ ε e β= 1 3E 2(1+ν) σ e *(n+1) Δ ε e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCMaeyypa0ZaaSaaaeaacaaIZa GaamyraaqaaiaaikdacaGGOaGaaGymaiabgUcaRiabe27aUjaacMca cqaHdpWCdaqhaaWcbaGaamyzaaqaaiaacQcaaaaaaOGaey4kaSIaeq OSdi2aaiWaaeaadaqadaqaamaalaaabaGaaGymaaqaaiaad6gacaGG OaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaeqyTdu2aaS baaSqaaiaadwgaaeqaaOGaey4kaSIaeuiLdqKaeqyTdu2aaSbaaSqa aiaadwgaaeqaaOGaaiykaaaacqGHRaWkdaWcaaqaaiaaigdaaeaaca WGTbGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadwgaaeqaaaaaaOGaayjk aiaawMcaaaGaay5Eaiaaw2haaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabek7aIjabg2da9iaaykW7daqadaqaaiaaigdacqGH sisldaWcaaqaaiaaiodacaWGfbaabaGaaGOmaiaacIcacaaIXaGaey 4kaSIaeqyVd4Maaiykaiabeo8aZnaaDaaaleaacaWGLbGaaGPaVdqa aiaacQcacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaakiabfs 5aejabew7aLnaaBaaaleaacaWGLbaabeaaaOGaayjkaiaawMcaaiaa ykW7aaa@7FF2@

 

 

 

8.5.6 Solution using Consistent Newton Raphson Iteration

 

At this point our problem is essentially identical to the hypoelasticity problem we solved earlier, except that we have to account for the history dependence of the solid.  With this in mind, we apply the loads (or impose displacements) in a series of increments, and calculate the change in displacements and stresses during each successive increment.  A generic load step is

 

Given current values for displacement u n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaBaaaleaacaWGUbaabeaaaa a@32FC@ , accumulated plastic strain ε e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadwgaaeqaaa aa@339C@  and stress σ n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaC4WdOWaaSbaaSqaaiaad6gaae qaaaaa@3420@

 

Compute the displacement increment Δ u n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaaCyDamaaBaaaleaacaWGUb aabeaaaaa@3462@  and increment in plastic strain Δ ε e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdu2aaSbaaSqaaiaadw gaaeqaaaaa@3502@

 

Update the solution to u n +Δ u n MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaBaaaleaacaWGUbaabeaaki abgUcaRiabfs5aejaahwhadaWgaaWcbaGaamOBaaqabaaaaa@376B@ , ε en+1 = ε en +Δ ε e MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadwgacaaMc8 UaamOBaiabgUcaRiaaigdaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqa aiaadwgacaaMc8UaamOBaaqabaGccqGHRaWkcqqHuoarcqaH1oqzda WgaaWcbaGaamyzaaqabaaaaa@4311@ , σ n+1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaC4WdOWaaSbaaSqaaiaad6gacq GHRaWkcaaIXaaabeaaaaa@35BD@

 

We start the solution for some generic load step with an initial guess for Δ u i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyDamaaDaaaleaacaWGPb aabaGaamyyaaaaaaa@3541@  - say w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33DD@  (we can use the solution at the end of the preceding increment).  We then attempt to correct this guess to bring it closer to the proper solution by setting w i a w i a +d w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaDaaaleaacaWGPbaabaGaam yyaaaakiabgkziUkaadEhadaqhaaWcbaGaamyAaaqaaiaadggaaaGc cqGHRaWkcaWGKbGaam4DamaaDaaaleaacaWGPbaabaGaamyyaaaaaa a@3DA3@ .  Ideally, of course, we would want the correction to satisfy

R σ ij ε kl ( w i a +d w i a ) N a x j dV R b i N a dV 2R t i * N a dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOWaamWaaeaacqaH1oqzdaWgaaWcbaGaam4Aaiaa dYgaaeqaaOGaaiikaiaadEhadaqhaaWcbaGaamyAaaqaaiaadggaaa GccqGHRaWkcaWGKbGaam4DamaaDaaaleaacaWGPbaabaGaamyyaaaa kiaacMcaaiaawUfacaGLDbaadaWcaaqaaiabgkGi2kaad6eadaahaa WcbeqaaiaadggaaaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadQga aeqaaaaakiaadsgacaWGwbGaeyOeI0Yaa8quaeaacaWGIbWaaSbaaS qaaiaadMgaaeqaaOGaamOtamaaCaaaleqabaGaamyyaaaakiaadsga caWGwbGaeyOeI0Yaa8quaeaacaWG0bWaa0baaSqaaiaadMgaaeaaca GGQaaaaOGaamOtamaaCaaaleqabaGaamyyaaaakiaadsgacaWGbbaa leaacqGHciITcaaIYaGaamOuaaqab0Gaey4kIipaaSqaaiaadkfaae qaniabgUIiYdaaleaacaWGsbaabeqdcqGHRiI8aOGaeyypa0JaaGim aaaa@679D@

Just as we did for hypoelastic problems, we linearize in d w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@34C6@  to obtain a system of linear equations

K aibk d w k b + R i a F i a =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaakiaadsgacaWG3bWaa0baaSqaaiaadUgaaeaa caWGIbaaaOGaey4kaSIaamOuamaaDaaaleaacaWGPbaabaGaamyyaa aakiabgkHiTiaadAeadaqhaaWcbaGaamyAaaqaaiaadggaaaGccqGH 9aqpcaaIWaaaaa@42CB@

with

K aibk = R C ijkl ep N a x j N b x l dV R i a = R σ ij ε kl ( w i b ) N a x j dV F i a = R b i N a dV+ 2R t i * N a dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaacaWGlbWaaSbaaSqaaiaadggaca WGPbGaamOyaiaadUgaaeqaaOGaeyypa0Zaa8quaeaacaWGdbWaa0ba aSqaaiaadMgacaWGQbGaam4AaiaadYgaaeaacaWGLbGaamiCaaaakm aalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGaamyyaaaaaOqaaiab gkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOWaaSaaaeaacqGHci ITcaWGobWaaWbaaSqabeaacaWGIbaaaaGcbaGaeyOaIyRaamiEamaa BaaaleaacaWGSbaabeaaaaGccaWGKbGaamOvaaWcbaGaamOuaaqab0 Gaey4kIipakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVdqaaiaadkfadaqhaaWcbaGaamyAaaqaaiaadggaaaGccqGH9aqp daWdrbqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGcdaWada qaaiabew7aLnaaBaaaleaacaWGRbGaamiBaaqabaGccaGGOaGaam4D amaaDaaaleaacaWGPbaabaGaamOyaaaakiaacMcaaiaawUfacaGLDb aadaWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaadggaaaaakeaa cqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiaadsgacaWGwb aaleaacaWGsbaabeqdcqGHRiI8aOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaamOramaaDaaaleaacaWGPbaabaGaamyy aaaakiabg2da9maapefabaGaamOyamaaBaaaleaacaWGPbaabeaaki aad6eadaahaaWcbeqaaiaadggaaaGccaWGKbGaamOvaiabgUcaRmaa pefabaGaamiDamaaDaaaleaacaWGPbaabaGaaiOkaaaakiaad6eada ahaaWcbeqaaiaadggaaaGccaWGKbGaamyqaaWcbaGaeyOaIyRaaGOm aiaadkfaaeqaniabgUIiYdaaleaacaWGsbaabeqdcqGHRiI8aaaaaa@B54B@

 

These expressions are essentially identical to those we dealt with in the hypoelasticity problem.

 

Developing an elastic-plastic FEM code is a chore.  It is conceptually no more difficult than the hypoelasticity problem, but there’s a lot more bookkeeping to do to keep track of the history dependence of the material.  Specifically, it is necessary to store, and to update, the stress and accumulated plastic strain at each integration point of each element, and to pass this information to the routines that calculate element residual and element stiffness information.  Newton-Raphson solution of the equilibrium equations is standard.  Once a convergent solution has been found, the stress and accumulated plastic strain at the element integration points must be updated, before starting the next load step.

 

 

 

 

8.5.7 Example small-strain plastic FEM code

 

As always, we provide simple example FEM codes to illustrate actual implementation.  The codes can be downloaded from

https://github.com/albower/Applied_Mechanics_of_Solids   

 

The MATLAB code is in a file FEMviscoplastic.m. Sample input files are provided in the files Viscoplastic_quad4.txt and Viscoplastic_hex8.txt

 

The code is set up to use the input file Viscoplastic_quad4.txt to solve the problem illustrated in the figure.  The element deforms in plane strain and has the viscoplastic constitutive response described earlier with

E=10000,ν=0.3 Y=15, ε 0 =0.5n=10, ε ˙ 0 =0.1m=10 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGfbGaeyypa0JaaGymaiaaic dacaaIWaGaaGimaiaaicdacaGGSaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqaH9oGBcqGH9aqpcaaIWaGaaiOlaiaaiodaaeaacaWGzb Gaeyypa0JaaGymaiaaiwdacaGGSaGaaGPaVlaaykW7caaMc8UaeqyT du2aaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaiaac6cacaaI1a GaaGPaVlaaykW7caaMc8UaaGPaVlaad6gacqGH9aqpcaaIXaGaaGim aiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqbew7aLzaaca WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaiaac6cacaaIXaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca WGTbGaeyypa0JaaGymaiaaicdaaaaa@79B2@  `

The program assumes the load increases from zero to 20 over a time period of 2.  The load is applied in a series of increments, and using consistent Newton-Raphson iteration to solve the nonlinear equations at each step.  Element strains and stresses are printed to a file at each load step, and the stress-v-displacement curve for the element is plotted, as shown in Fig. 8.34. <Fig 8.34 near here>

 


 

 

 

HEALTH WARNING: This demonstration code uses fully integrated elements and may perform poorly in applications where plastic strains are significantly greater than elastic strains because of volumetric locking.  The demonstration problem does not lock, because the strain field in the solid is uniform.  For details of locking and how to avoid it see section 8.6.