Problems for Chapter 4

 

Solution to Simple Problems

 

 

 

4.2.  Axially and Spherically Symmetric Solutions for Elastic-Plastic Solids

 

 

4.2.1.      The figure shows a long hollow cylindrical shaft with inner radius a and outer radius b, which spins with angular speed ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHjpWDaaa@34A3@  about its axis.  Assume that the disk is made from an elastic-perfectly plastic material with yield stress Y and density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCaaa@3496@ . The goal of this problem is to calculate the critical angular speed that will cause the cylinder to collapse (the point of plastic collapse occurs when the entire cylinder reaches yield).

4.2.1.1.            Using the cylindrical-polar basis shown, list any stress or strain components that must be zero.  Assume plane strain deformation.

4.2.1.2.             Write down the boundary conditions that the stress field must satisfy at r=a and r=b

4.2.1.3.            Write down the linear momentum balance equation in terms of the stress components, the angular velocity and the disk’s density. Use polar coordinates and assume axial symmetry.

4.2.1.4.            Using the plastic flow rule, show that σ zz =( σ rr + σ θθ )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOEaiaadQ haaeqaaOGaeyypa0Jaaiikaiabeo8aZnaaBaaaleaacaWGYbGaamOC aaqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaeqiUdeNaeqiUdehabe aakiaacMcacaGGVaGaaGOmaaaa@44B9@  if the cylinder deforms plastically under plane strain conditions

4.2.1.5.            Using Von-Mises yield criterion, show that the radial and hoop stress must satisfy | σ θθ σ rr |=2Y/ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaabdaqaaiabeo8aZnaaBaaaleaacq aH4oqCcqaH4oqCaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaadkha caWGYbaabeaaaOGaay5bSlaawIa7aiabg2da9iaaikdacaWGzbGaai 4lamaakaaabaGaaG4maaWcbeaaaaa@444C@

4.2.1.6.            Hence, show that the radial stress must satisfy the equation

d σ rr dr =ρr ω 2 + 2 3 Y r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgacqaHdpWCdaWgaa WcbaGaamOCaiaadkhaaeqaaaGcbaGaamizaiaadkhaaaGaeyypa0Ja eyOeI0IaeqyWdiNaamOCaiabeM8a3naaCaaaleqabaGaaGOmaaaaki abgUcaRmaalaaabaGaaGOmaaqaamaakaaabaGaaG4maaWcbeaaaaGc daWcaaqaaiaadMfaaeaacaWGYbaaaaaa@4565@

4.2.1.7.            Finally, calculate the critical angular speed that will cause plastic collapse.

 

 

 

4.2.2.      Consider a spherical pressure vessel subjected to cyclic internal pressure, as described in Section 4.2.4. Show that a cyclic plastic zone can only develop in the vessel if b/a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGIbGaai4laiaadggaaaa@3546@  exceeds a critical magnitude.  Give a formula for the critical value of b/a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGIbGaai4laiaadggaaaa@3546@ , and find a (numerical, if necessary) solution for b/a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGIbGaai4laiaadggaaaa@3546@ .

 

 

 

4.2.3.      A long cylindrical pipe with internal bore a and outer diameter b is made from an elastic-perfectly plastic solid, with Young’s modulus E, Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH9oGBaaa@347E@  and uniaxial tensile yield stress Y is subjected to internal pressure.  The (approximate) solution for a cylinder that is subjected to a monotonically increasing pressure is given in Section 4.2.6.  The goal of this problem is to extend the solution to investigate the behavior of a cylinder that is subjected to cyclic pressure.

4.2.3.1.            Suppose that the internal pressure is first increased to a value that lies in the range (1 a 2 / b 2 )< 3 p a /Y<2log(b/a) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaaGymaiabgkHiTiaadggada ahaaWcbeqaaiaaikdaaaGccaGGVaGaamOyamaaCaaaleqabaGaaGOm aaaakiaacMcacqGH8aapdaGcaaqaaiaaiodaaSqabaGccaWGWbWaaS baaSqaaiaadggaaeqaaOGaai4laiaadMfacqGH8aapcaaIYaGaciiB aiaac+gacaGGNbGaaiikaiaadkgacaGGVaGaamyyaiaacMcaaaa@481E@ , and then returned to zero.  Assume that the solid unloads elastically (so the change in stress during unloading can be calculated using the elastic solution).  Calculate the residual stress in the cylinder after unloading.

4.2.3.2.            Hence, determine the critical internal pressure at which the residual stresses cause the cylinder to yield after unloading

4.2.3.3.            Find the stress and displacement in the cylinder at the instant maximum pressure, and after subsequent unloading, for internal pressures exceeding the value calculated in 4.2.3.2.

 

 

 

 

 

4.2.4.      The following technique is sometimes used to connect tubular components down oil wells. As manufactured, the smaller of the two tubes has inner and outer radii (a,b) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGHbGaaiilaiaadkgacaGGPa aaaa@343E@ , while the larger has inner and outer radii (b,d) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGIbGaaiilaiaadsgacaGGPa aaaa@3441@ , so that the end of the smaller tube can simply be inserted into the larger tube. An over-sized die is then pulled through the bore of the inner of the two tubes.  The radius of the die is chosen so that both cylinders are fully plastically deformed as the die passes through the region where the two cylinders overlap.  As a result, a state of residual stress is developed at the coupling, which clamps the two tubes together.   Assume that the tubes are elastic-perfectly plastic solids with Young’s modulus E, Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3220@  and yield stress in uniaxial tension Y.

4.2.4.1.            Use the solution given in Section 4.2.6 to calculate the radius of the die that will cause both cylinders to yield throughout their wall-thickness (i.e. the radius of the plastic zone must reach d).

4.2.4.2.            The die effectively subjects to the inner bore of the smaller tube to a cycle of pressure. Use the solution to the preceding problem to calculate the residual stress distribution in the region where the two tubes overlap (neglect end effects and assume plane strain deformation)

4.2.4.3.            For d/a=1.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaGGVaGaamyyaiabg2da9iaaig dacaGGUaGaaGynaaaa@363C@ , calculate the value of b that gives the strongest coupling.

 

 

 

4.2.5.       A spherical pressure vessel is subjected to internal pressure p a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchadaWgaaWcbaGaamyyaaqabaaaaa@326F@  and is free of traction on its outer surface.  The vessel deforms by creep, and may be idealized as an elastic-power law viscoplastic solid with flow potential

g( σ e )= ε ˙ 0 ( σ e Y ) m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiaacIcacqaHdpWCdaWgaaWcba GaamyzaaqabaGccaGGPaGaeyypa0JafqyTduMbaiaadaqhaaWcbaGa aGimaaqaaaaakmaabmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaam yzaaqabaaakeaacaWGzbaaaaGaayjkaiaawMcaamaaCaaaleqabaGa amyBaaaaaaa@4037@

where Y,m, ε ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMfacaGGSaGaamyBaiaacYcacuaH1o qzgaGaamaaBaaaleaacaaIWaaabeaaaaa@362E@  are material properties and σ e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGLbaabeaaaa a@3341@  is the Von-Mises equivalent stress.  Calculate the steady-state stress and strain rate fields in the solid, and deduce an formula for the rate of expansion of the inner bore of the vessel.  Note that at steady state, the stress is constant, and so the elastic strain rate must vanish.