2.5 Work done by stresses; Principle of Virtual Work

 

In this section, we derive formulas that enable you to calculate the work done by stresses acting on a solid.  In addition, we prove the principle of virtual work MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  which is an alternative way of expressing the equations of motion and equilibrium derived in Section 2.4.  The principle of virtual work is the starting point for finite element analysis, and so is a particularly important result.

 


 

 

2.5.1 Work done by Cauchy stresses

 

Consider a solid with mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@  in its initial configuration, and density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@  in the deformed solid, as shown in the figure.  Let σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  denote the Cauchy stress distribution within the solid.  Assume that the solid is subjected to a body force b i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaWGPbaabeaaaa a@32E0@  (per unit mass), and let u i , v i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacYcacaaMc8UaaGPaVlaadAhadaWgaaWcbaGaamyAaaqabaaaaa@38D8@  and a i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaaa a@32DF@  denote the displacement, velocity and acceleration of a material particle at position y i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyEamaaBaaaleaacaWGPbaabeaaaa a@32F7@   in the deformed solid. In addition, let

D ij = 1 2 v i y j + v j y i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaWa aSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaey OaIyRaamyEamaaBaaaleaacaWGQbaabeaaaaGccqGHRaWkdaWcaaqa aiabgkGi2kaadAhadaWgaaWcbaGaamOAaaqabaaakeaacqGHciITca WG5bWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaaa@46F0@

denote the stretch rate in the solid.

 

The rate of work done by Cauchy stresses per unit deformed volume is then σ ij D ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaadseadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@3788@ .  This energy is either dissipated as heat or stored as internal energy in the solid, depending on the material behavior.

 

We shall show that the rate of work done by internal forces acting on any sub-volume V bounded by a surface A in the deformed solid can be calculated from

r ˙ = A T i (n) v i dA + V ρ b i v i dV = V σ ij D ij dV + d dt V 1 2 ρ v i v i dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOCayaacaGaeyypa0Zaa8quaeaaca WGubWaa0baaSqaaiaadMgaaeaacaGGOaGaaCOBaiaacMcaaaGccaWG 2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadgeaaSqaaiaadgeaae qaniabgUIiYdGccqGHRaWkdaWdrbqaaiabeg8aYjaadkgadaWgaaWc baGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizai aadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWdrbqaaiab eo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWGebWaaSbaaSqaai aadMgacaWGQbaabeaakiaadsgacaWGwbaaleaacaWGwbaabeqdcqGH RiI8aOGaey4kaSYaaSaaaeaacaWGKbaabaGaamizaiaadshaaaWaai WaaeaadaWdrbqaamaalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdiNa amODamaaBaaaleaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaa qabaGccaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipaaOGaay5E aiaaw2haaaaa@68EC@

Here, the two terms on the left hand side represent the rate of work done by tractions and body forces acting on the solid (work done = force x velocity).  The first term on the right-hand side can be interpreted as the work done by Cauchy stresses; the second term is the rate of change of kinetic energy. 

 

Derivation: Substitute for T i (n) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaDaaaleaacaWGPbaabaGaai ikaiaah6gacaGGPaaaaaaa@3524@  in terms of Cauchy stress to see that

r ˙ = A T i (n) v i dA + V ρ b i v i dV = A n j σ ji v i dA + V ρ b i v i dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOCayaacaGaeyypa0Zaa8quaeaaca WGubWaa0baaSqaaiaadMgaaeaacaGGOaGaaCOBaiaacMcaaaGccaWG 2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadgeaaSqaaiaadgeaae qaniabgUIiYdGccqGHRaWkdaWdrbqaaiabeg8aYjaadkgadaWgaaWc baGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizai aadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWdrbqaaiaa d6gadaWgaaWcbaGaamOAaaqabaGccqaHdpWCdaWgaaWcbaGaamOAai aadMgaaeqaaOGaamODamaaBaaaleaacaWGPbaabeaakiaadsgacaWG bbaaleaacaWGbbaabeqdcqGHRiI8aOGaey4kaSYaa8quaeaacqaHbp GCcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamODamaaBaaaleaacaWG PbaabeaakiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aaaa@636C@

Now, apply the divergence theorem to the first term on the right hand side

r ˙ = V y j σ ji v i dV + V ρ b i v i dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOCayaacaGaeyypa0Zaa8quaeaada WcaaqaaiabgkGi2cqaaiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqa baaaaOWaaeWaaeaacqaHdpWCdaWgaaWcbaGaamOAaiaadMgaaeqaaO GaamODamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaadsga caWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaey4kaSYaa8quaeaacq aHbpGCcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamODamaaBaaaleaa caWGPbaabeaakiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aa aa@500B@

Evaluate the derivative and collect together the terms involving body force and stress divergence

r ˙ = V σ ji v i y j + σ ji y j +ρ b i v i dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOCayaacaGaeyypa0Zaa8quaeaada Gadaqaaiabeo8aZnaaBaaaleaacaWGQbGaamyAaaqabaGcdaWcaaqa aiabgkGi2kaadAhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITca WG5bWaaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRmaabmaabaWaaSaa aeaacqGHciITcqaHdpWCdaWgaaWcbaGaamOAaiaadMgaaeqaaaGcba GaeyOaIyRaamyEamaaBaaaleaacaWGQbaabeaaaaGccqGHRaWkcqaH bpGCcaWGIbWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaam ODamaaBaaaleaacaWGPbaabeaaaOGaay5Eaiaaw2haaiaadsgacaWG wbaaleaacaWGwbaabeqdcqGHRiI8aaaa@5700@

Recall the equation of motion

σ ji y j +ρ b i =ρ a i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamOAaiaadMgaaeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaa caWGQbaabeaaaaGccqGHRaWkcqaHbpGCcaWGIbWaaSbaaSqaaiaadM gaaeqaaOGaeyypa0JaeqyWdiNaamyyamaaBaaaleaacaWGPbaabeaa aaa@4327@

and note that since the stress is symmetric σ ij = σ ji MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabeo8aZnaaBaaaleaacaWGQbGaamyAaaqabaaa aa@3988@

σ ji v i y j = 1 2 σ ij + σ ji v i y j = 1 2 σ ij v i y j + v j y i = σ ij D ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPb aabeaakmaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGPbaabeaa aOqaaiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqabaaaaOGaeyypa0 ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiabeo8aZnaaBaaa leaacaWGPbGaamOAaaqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaam OAaiaadMgaaeqaaaGccaGLOaGaayzkaaWaaSaaaeaacqGHciITcaWG 2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamyEamaaBaaale aacaWGQbaabeaaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaa aiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGcdaqadaqaamaala aabaGaeyOaIyRaamODamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi 2kaadMhadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSYaaSaaaeaacq GHciITcaWG2bWaaSbaaSqaaiaadQgaaeqaaaGcbaGaeyOaIyRaamyE amaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaacqGH9aqpcq aHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamiramaaBaaaleaa caWGPbGaamOAaaqabaaaaa@6E4E@

to see that

r ˙ = V σ ij D ij +ρ a i v i dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOCayaacaGaeyypa0Zaa8quaeaada Gadaqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWGebWa aSbaaSqaaiaadMgacaWGQbaabeaakiabgUcaRiabeg8aYjaadggada WgaaWcbaGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaaGc caGL7bGaayzFaaGaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYd aaaa@477C@

Finally, note that

V ρ a i v i dV = V 0 ρ 0 d v i dt v i d V 0 = V 0 ρ o 1 2 d dt v i v i d V 0 = d dt V 0 1 2 ρ 0 v i v i d V 0 = d dt V 0 1 2 ρ 0 v i v i d V 0 = d dt V 1 2 ρ v i v i dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaaiabeg8aYjaadggada WgaaWcbaGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGa amizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWdrb qaaiabeg8aYnaaBaaaleaacaaIWaaabeaakmaalaaabaGaamizaiaa dAhadaWgaaWcbaGaamyAaaqabaaakeaacaWGKbGaamiDaaaacaWG2b WaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadAfadaWgaaWcbaGaaGim aaqabaGccqGH9aqpaSqaaiaadAfadaWgaaadbaGaaGimaaqabaaale qaniabgUIiYdGcdaWdrbqaaiabeg8aYnaaBaaaleaacaWGVbaabeaa kmaalaaabaGaaGymaaqaaiaaikdaaaWaaSaaaeaacaWGKbaabaGaam izaiaadshaaaWaaeWaaeaacaWG2bWaaSbaaSqaaiaadMgaaeqaaOGa amODamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaadsgaca WGwbWaaSbaaSqaaiaaicdaaeqaaaqaaiaadAfadaWgaaadbaGaaGim aaqabaaaleqaniabgUIiYdaakeaacqGH9aqpdaWcaaqaaiaadsgaae aacaWGKbGaamiDaaaadaqadaqaamaapefabaWaaSaaaeaacaaIXaaa baGaaGOmaaaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGcdaqadaqaai aadAhadaWgaaWcbaGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaGaamizaiaadAfadaWgaaWcbaGaaGimaa qabaaabaGaamOvamaaBaaameaacaaIWaaabeaaaSqab0Gaey4kIipa aOGaayjkaiaawMcaaiabg2da9maalaaabaGaamizaaqaaiaadsgaca WG0baaamaabmaabaWaa8quaeaadaWcaaqaaiaaigdaaeaacaaIYaaa aiabeg8aYnaaBaaaleaacaaIWaaabeaakmaabmaabaGaamODamaaBa aaleaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaaakiaa wIcacaGLPaaacaWGKbGaamOvamaaBaaaleaacaaIWaaabeaaaeaaca WGwbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRiI8aaGccaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacaWGKbaabaGaamizaiaadshaaaWaa8 quaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiabeg8aYnaabmaabaGa amODamaaBaaaleaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaa qabaaakiaawIcacaGLPaaacaWGKbGaamOvaaWcbaGaamOvamaaBaaa meaaaeqaaaWcbeqdcqGHRiI8aaaaaa@A0A0@

Finally, substitution leads to

r ˙ = A T i (n) v i dA + V ρ b i v i dV = V σ ij D ij dV + d dt V 1 2 ρ v i v i dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOCayaacaGaeyypa0Zaa8quaeaaca WGubWaa0baaSqaaiaadMgaaeaacaGGOaGaaCOBaiaacMcaaaGccaWG 2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadgeaaSqaaiaadgeaae qaniabgUIiYdGccqGHRaWkdaWdrbqaaiabeg8aYjaadkgadaWgaaWc baGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizai aadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWdrbqaaiab eo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWGebWaaSbaaSqaai aadMgacaWGQbaabeaakiaadsgacaWGwbaaleaacaWGwbaabeqdcqGH RiI8aOGaey4kaSYaaSaaaeaacaWGKbaabaGaamizaiaadshaaaWaai WaaeaadaWdrbqaamaalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdiNa amODamaaBaaaleaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaa qabaGccaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipaaOGaay5E aiaaw2haaaaa@68EC@

as required.

 

 

 

2.5.2 Rate of mechanical work in terms of other stress measures

 

· The rate of work done per unit undeformed volume by Kirchhoff stress is τ ij D ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaadMgacaWGQb aabeaakiaadseadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@378A@

· The rate of work done per unit undeformed volume by Nominal stress is S ij F ˙ ji MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGcceWGgbGbaiaadaWgaaWcbaGaamOAaiaadMgaaeqaaaaa@36A8@

· The rate of work done per unit undeformed volume by Material stress is Σ ij E ˙ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaakiqadweagaGaamaaBaaaleaacaWGPbGaamOAaaqabaaaaa@3753@

 

This shows that nominal stress and deformation gradient are work conjugate, as are material stress and Lagrange strain.

 

In addition, the rate of work done on a volume V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaaIWaaabeaaaa a@32A1@  of the undeformed solid can be expressed as

r ˙ = A T i (n) v i dA + V ρ b i v i dV = V 0 τ ij D ij d V 0 + d dt V 0 1 2 ρ 0 v i v i d V 0 r ˙ = A T i (n) v i dA + V ρ b i v i dV = V 0 S ij F ˙ ji d V 0 + d dt V 0 1 2 ρ 0 v i v i d V 0 r ˙ = A T i (n) v i dA + V ρ b i v i dV = V 0 Σ ij E ˙ ij d V 0 + d dt V 0 1 2 ρ 0 v i v i d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaaceWGYbGbaiaacqGH9aqpdaWdrb qaaiaadsfadaqhaaWcbaGaamyAaaqaaiaacIcacaWHUbGaaiykaaaa kiaadAhadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamyqaaWcbaGaam yqaaqab0Gaey4kIipakiabgUcaRmaapefabaGaeqyWdiNaamOyamaa BaaaleaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGcca WGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maapefa baGaeqiXdq3aaSbaaSqaaiaadMgacaWGQbaabeaakiaadseadaWgaa WcbaGaamyAaiaadQgaaeqaaOGaamizaiaadAfadaWgaaWcbaGaaGim aaqabaaabaGaamOvamaaBaaameaacaaIWaaabeaaaSqab0Gaey4kIi pakiabgUcaRmaalaaabaGaamizaaqaaiaadsgacaWG0baaamaacmaa baWaa8quaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiabeg8aYnaaBa aaleaacaaIWaaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGccaWG 2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadAfadaWgaaWcbaGaaG imaaqabaaabaGaamOvamaaBaaameaacaaIWaaabeaaaSqab0Gaey4k IipaaOGaay5Eaiaaw2haaaqaaiqadkhagaGaaiabg2da9maapefaba GaamivamaaDaaaleaacaWGPbaabaGaaiikaiaah6gacaGGPaaaaOGa amODamaaBaaaleaacaWGPbaabeaakiaadsgacaWGbbaaleaacaWGbb aabeqdcqGHRiI8aOGaey4kaSYaa8quaeaacqaHbpGCcaWGIbWaaSba aSqaaiaadMgaaeqaaOGaamODamaaBaaaleaacaWGPbaabeaakiaads gacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaa caWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaakiqadAeagaGaamaaBa aaleaacaWGQbGaamyAaaqabaGccaWGKbGaamOvamaaBaaaleaacaaI WaaabeaaaeaacaWGwbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRi I8aOGaey4kaSYaaSaaaeaacaWGKbaabaGaamizaiaadshaaaWaaiWa aeaadaWdrbqaamaalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdi3aaS baaSqaaiaaicdaaeqaaOGaamODamaaBaaaleaacaWGPbaabeaakiaa dAhadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamOvamaaBaaaleaaca aIWaaabeaaaeaacaWGwbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGH RiI8aaGccaGL7bGaayzFaaaabaGabmOCayaacaGaeyypa0Zaa8quae aacaWGubWaa0baaSqaaiaadMgaaeaacaGGOaGaaCOBaiaacMcaaaGc caWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadgeaaSqaaiaadg eaaeqaniabgUIiYdGccqGHRaWkdaWdrbqaaiabeg8aYjaadkgadaWg aaWcbaGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaam izaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWdrbqa aiabfo6atnaaBaaaleaacaWGPbGaamOAaaqabaGcceWGfbGbaiaada WgaaWcbaGaamyAaiaadQgaaeqaaOGaamizaiaadAfadaWgaaWcbaGa aGimaaqabaaabaGaamOvamaaBaaameaacaaIWaaabeaaaSqab0Gaey 4kIipakiabgUcaRmaalaaabaGaamizaaqaaiaadsgacaWG0baaamaa cmaabaWaa8quaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiabeg8aYn aaBaaaleaacaaIWaaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGc caWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadAfadaWgaaWcba GaaGimaaqabaaabaGaamOvamaaBaaameaacaaIWaaabeaaaSqab0Ga ey4kIipaaOGaay5Eaiaaw2haaaaaaa@E597@

 

 

Derivations: The proof of the first result (and the stress power of Kirchhoff stress) is straightforward and is left as an exercise.  To show the second result, note that T i (n) dA= n j 0 S ji d A 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaDaaaleaacaWGPbaabaGaai ikaiaah6gacaGGPaaaaOGaamizaiaadgeacqGH9aqpcaWGUbWaa0ba aSqaaiaadQgaaeaacaaIWaaaaOGaam4uamaaBaaaleaacaWGQbGaam yAaaqabaGccaWGKbGaamyqamaaBaaaleaacaaIWaaabeaaaaa@4036@  and dV=Jd V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadAfacqGH9aqpcaWGkbGaam izaiaadAfadaWgaaWcbaGaaGimaaqabaaaaa@3723@  to re-write the integrals over the undeformed solid; then and apply the divergence theorem to see that

r ˙ = V 0 x j S ji v i d V 0 + V 0 ρ b i v i Jd V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOCayaacaGaeyypa0Zaa8quaeaada WcaaqaaiabgkGi2cqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqa baaaaOWaaeWaaeaacaWGtbWaaSbaaSqaaiaadQgacaWGPbaabeaaki aadAhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaWGKbGa amOvamaaBaaaleaacaaIWaaabeaaaeaacaWGwbWaaSbaaWqaaiaaic daaeqaaaWcbeqdcqGHRiI8aOGaey4kaSYaa8quaeaacqaHbpGCcaWG IbWaaSbaaSqaaiaadMgaaeqaaOGaamODamaaBaaaleaacaWGPbaabe aakiaadQeacaWGKbGaamOvamaaBaaaleaacaaIWaaabeaaaeaacaWG wbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRiI8aaaa@5388@

Evaluate the derivative, recall that Jρ= ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabeg8aYjabg2da9iabeg8aYn aaBaaaleaacaaIWaaabeaaaaa@371B@  and use the equation of motion

S ij x i + ρ 0 b j = ρ 0 d v j dt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVpaalaaabaGaeyOaIyRaam4uam aaBaaaleaacaWGPbGaamOAaaqabaaakeaacqGHciITcaWG4bWaaSba aSqaaiaadMgaaeqaaaaakiabgUcaRiabeg8aYnaaBaaaleaacaaIWa aabeaakiaadkgadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcqaHbpGC daWgaaWcbaGaaGimaaqabaGcdaWcaaqaaiaadsgacaWG2bWaaSbaaS qaaiaadQgaaeqaaaGcbaGaamizaiaadshaaaaaaa@48A1@

to see that

r ˙ = V 0 S ji v i x j d V 0 + V 0 ρ 0 d v i dt v i d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOCayaacaGaeyypa0Zaa8quaeaaca WGtbWaaSbaaSqaaiaadQgacaWGPbaabeaakmaalaaabaGaeyOaIyRa amODamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadIhadaWgaa WcbaGaamOAaaqabaaaaOGaamizaiaadAfadaWgaaWcbaGaaGimaaqa baaabaGaamOvamaaBaaameaacaaIWaaabeaaaSqab0Gaey4kIipaki abgUcaRmaapefabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOWaaSaa aeaacaWGKbGaamODamaaBaaaleaacaWGPbaabeaaaOqaaiaadsgaca WG0baaaiaadAhadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamOvamaa BaaaleaacaaIWaaabeaaaeaacaWGwbWaaSbaaWqaaiaaicdaaeqaaa WcbeqdcqGHRiI8aaaa@550F@

Finally, note that v i / x j = u ˙ i / x j = F ˙ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamODamaaBaaaleaacaWGPb aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaOGa eyypa0ZaaeWaaeaacqGHciITceWG1bGbaiaadaWgaaWcbaGaamyAaa qabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaOGa ayjkaiaawMcaaiabg2da9iqadAeagaGaamaaBaaaleaacaWGPbGaam OAaaqabaaaaa@46DA@  and re-write the second integral as a kinetic energy term as before to obtain the required result.

 

The third result follows by straightforward algebraic manipulations MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  note that by definition

S ij F ˙ ji = Σ ik F jk F ˙ ji MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGcceWGgbGbaiaadaWgaaWcbaGaamOAaiaadMgaaeqaaOGaeyyp a0Jaeu4Odm1aaSbaaSqaaiaadMgacaWGRbaabeaakiaadAeadaqhaa WcbaGaamOAaiaadUgaaeaaaaGcceWGgbGbaiaadaWgaaWcbaGaamOA aiaadMgaaeqaaaaa@410E@

Since Σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@346D@  is symmetric it follows that

Σ ik F jk F ˙ ji = 1 2 Σ ik + Σ ki F jk F ˙ ji = Σ ik 1 2 F jk F ˙ ji + F ji F ˙ jk = Σ ik E ˙ ik MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4Odm1aaSbaaSqaaiaadMgacaWGRb aabeaakiaadAeadaqhaaWcbaGaamOAaiaadUgaaeaaaaGcceWGgbGb aiaadaWgaaWcbaGaamOAaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaaca aIXaaabaGaaGOmaaaadaqadaqaaiabfo6atnaaBaaaleaacaWGPbGa am4AaaqabaGccqGHRaWkcqqHJoWudaWgaaWcbaGaam4AaiaadMgaae qaaaGccaGLOaGaayzkaaGaamOramaaDaaaleaacaWGQbGaam4Aaaqa aaaakiqadAeagaGaamaaBaaaleaacaWGQbGaamyAaaqabaGccqGH9a qpcqqHJoWudaWgaaWcbaGaamyAaiaadUgaaeqaaOWaaSaaaeaacaaI XaaabaGaaGOmaaaadaqadaqaaiaadAeadaqhaaWcbaGaamOAaiaadU gaaeaaaaGcceWGgbGbaiaadaWgaaWcbaGaamOAaiaadMgaaeqaaOGa ey4kaSIaamOramaaDaaaleaacaWGQbGaamyAaaqaaaaakiqadAeaga GaamaaBaaaleaacaWGQbGaam4AaaqabaaakiaawIcacaGLPaaacqGH 9aqpcqqHJoWudaWgaaWcbaGaamyAaiaadUgaaeqaaOGabmyrayaaca WaaSbaaSqaaiaadMgacaWGRbaabeaaaaa@67CB@

 

 

 

2.5.3 Rate of mechanical work for infinitesimal deformations

 

For infintesimal motions all stress measures are equal; and all strain rate measures can be approximated by the infinitesimal strain tensor ε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyTdaaa@3221@ .  The rate of work done by stresses per unit volume of either deformed or undeformed solid (the difference is neglected) can be expressed as σ ij ε ˙ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiqbew7aLzaacaWaaSbaaSqaaiaadMgacaWGQbaabeaaaaa@386F@ , and the work done on a volume V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaaIWaaabeaaaa a@32A1@  of the solid is

r ˙ = A T i (n) v i dA + V ρ b i v i dV = V 0 σ ij ε ˙ ij d V 0 + d dt V 0 1 2 ρ 0 v i v i d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOCayaacaGaeyypa0Zaa8quaeaaca WGubWaa0baaSqaaiaadMgaaeaacaGGOaGaaCOBaiaacMcaaaGccaWG 2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadgeaaSqaaiaadgeaae qaniabgUIiYdGccqGHRaWkdaWdrbqaaiabeg8aYjaadkgadaWgaaWc baGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizai aadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWdrbqaaiab eo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccuaH1oqzgaGaamaaBa aaleaacaWGPbGaamOAaaqabaGccaWGKbGaamOvamaaBaaaleaacaaI WaaabeaaaeaacaWGwbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRi I8aOGaey4kaSYaaSaaaeaacaWGKbaabaGaamizaiaadshaaaWaaiWa aeaadaWdrbqaamaalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdi3aaS baaSqaaiaaicdaaeqaaOGaamODamaaBaaaleaacaWGPbaabeaakiaa dAhadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamOvamaaBaaaleaaca aIWaaabeaaaeaacaWGwbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGH RiI8aaGccaGL7bGaayzFaaaaaa@6E5D@

 

 

 

2.5.4 The principle of Virtual Work

 

The principle of virtual work forms the basis for the finite element method in the mechanics of solids and so will be discussed in detail in this section.


Suppose that a deformable solid is subjected to loading that induces a displacement field u(x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiaacIcacaWH4bGaaiykaaaa@3438@ , and a velocity field v(x) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiaacIcacaWH4bGaaiykaaaa@3439@ , as shown in the figure. The loading consists of a prescribed displacement on part of the boundary (denoted by S 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaaaa a@329F@  ), together with a traction t (which may be zero in places) applied to the rest of the boundary (denoted by S 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIYaaabeaaaa a@32A0@  ).  The loading induces a Cauchy stress σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@ .  The stress field satisfies the angular momentum balance equation σ ij = σ ji MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabeo8aZnaaBaaaleaacaWGQbGaamyAaaqabaaa aa@3988@ .

 

The principle of virtual work is a different way of re-writing partial differential equation for linear moment balance

σ ji y j +ρ b i =ρ d v i dt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamOAaiaadMgaaeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaa caWGQbaabeaaaaGccqGHRaWkcqaHbpGCcaWGIbWaaSbaaSqaaiaadM gaaeqaaOGaeyypa0JaeqyWdi3aaSaaaeaacaWGKbGaamODamaaBaaa leaacaWGPbaabeaaaOqaaiaadsgacaWG0baaaaaa@4621@

in an equivalent integral form, which is much better suited for computer solution.

 

To express the principle, we define a kinematically admissible virtual velocity field δv(y) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiaacIcacaWH5bGaai ykaaaa@35DF@ , satisfying  δv=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiabg2da9iaaicdaaa a@3544@  on S 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaaaa a@329F@ .  You can visualize this field as a small change in the velocity of the solid, if you like, but it is really just an arbitrary differentiable vector field.  The term `kinematically admissible’ is just a complicated way of saying that the field is continuous, differentiable, and satisfies δv=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiabg2da9iaaicdaaa a@3544@  on S 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaaaa a@329F@  - that is to say, if you perturb the velocity by δv(y) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiaacIcacaWH5bGaai ykaaaa@35DF@ , the boundary conditions on displacement are still satisfied.

 

In addition, we define an associated virtual velocity gradient, and virtual stretch rate as

δ L ij = δ v i y j δ D ij = 1 2 δ v i y j + δ v j y i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamitamaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2kabes7aKjaadAha daWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaai aadQgaaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaeqiTdqMaamiramaaBaaaleaacaWGPbGa amOAaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabm aabaWaaSaaaeaacqGHciITcqaH0oazcaWG2bWaaSbaaSqaaiaadMga aeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaacaWGQbaabeaaaaGccq GHRaWkdaWcaaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcbaGaamOA aaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaaaO GaayjkaiaawMcaaaaa@746C@

 

The principal of virtual work may be stated in two ways.

 

 

First version of the principle of virtual work

 

The first is not very interesting, but we will state it anyway.  Suppose that the Cauchy stress satisfies:

 

1. The boundary condition n i σ ij = t j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaki abeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcaWG0bWa aSbaaSqaaiaadQgaaeqaaaaa@39E7@  on S 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIYaaabeaaaa a@32A0@

 

2. The linear momentum balance equation   σ ji y j +ρ b i =ρ d v i dt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamOAaiaadMgaaeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaa caWGQbaabeaaaaGccqGHRaWkcqaHbpGCcaWGIbWaaSbaaSqaaiaadM gaaeqaaOGaeyypa0JaeqyWdi3aaSaaaeaacaWGKbGaamODamaaBaaa leaacaWGPbaabeaaaOqaaiaadsgacaWG0baaaaaa@4621@

 

Then the virtual work equation

V σ ij δ D ij dV+ V ρ d v i dt δ v i dV V ρ b i δ v i dV S 2 t i δ v i dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaacqaHdpWCkmaaBaaale aacaWGPbGaamOAaaqabaGccqaH0oazcaWGebWaaSbaaSqaaiaadMga caWGQbaabeaajaaWcaaMc8UaamizaiaadAfacqGHRaWkkmaapefaja aWbaGaeqyWdiNcdaWcaaqaaiaadsgacaWG2bWaaSbaaSqaaiaadMga aeqaaaGcbaGaamizaiaadshaaaqcaaSaeqiTdqMaamODaOWaaSbaaS qaaiaadMgaaeqaaaqcbaCaaiaadAfaaeqajmaWcqGHRiI8aOGaamiz aiaadAfajaaWcqGHsislkmaapefajaaWbaGaeqyWdiNaamOyaOWaaS baaSqaaiaadMgaaeqaaKaaalabes7aKjaadAhakmaaBaaaleaacaWG PbaabeaajaaWcaWGKbGaamOvaiabgkHiTOWaa8quaKaaahaacaWG0b GcdaWgaaWcbaGaamyAaaqabaqcaaSaeqiTdqMaamODaOWaaSbaaSqa aiaadMgaaeqaaaqcbaCaaiaadofalmaaBaaajiaWbaGaaGOmaaqaba aajeaWbeqcdaSaey4kIipaaKqaahaacaWGwbaabeqcdaSaey4kIipa aSqaaiaadAfaaeqaniabgUIiYdGccaWGKbGaamyqaiabg2da9iaaic daaaa@79C5@

is satisfied for all virtual velocity fields.

 

 

Proof:  Observe that since the Cauchy stress is symmetric

σ ij δ D ij = 1 2 σ ij δ v i y j + δ v j y i = 1 2 σ ji δ v i y j + σ ij δ v j y i = σ ji δ v i y j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabes7aKjaadseadaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOWaaeWaaeaadaWcaaqaaiabgkGi2kabes7a KjaadAhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG5bWaaS baaSqaaiaadQgaaeqaaaaakiabgUcaRmaalaaabaGaeyOaIyRaeqiT dqMaamODamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2kaadMhada WgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacaaIXaaabaGaaGOmaaaadaqadaqaaiabeo8aZnaaBaaaleaaca WGQbGaamyAaaqabaGcdaWcaaqaaiabgkGi2kabes7aKjaadAhadaWg aaWcbaGaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQ gaaeqaaaaakiabgUcaRiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqa baGcdaWcaaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcbaGaamOAaa qabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaaaOGa ayjkaiaawMcaaiabg2da9iabeo8aZnaaBaaaleaacaWGQbGaamyAaa qabaGcdaWcaaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcbaGaamyA aaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaaaa a@7F4A@

Next, note that

σ ji v i y j = y j σ ji δ v i σ ji y j δ v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPb aabeaakmaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGPbaabeaa aOqaaiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqabaaaaOGaeyypa0 ZaaSaaaeaacqGHciITaeaacqGHciITcaWG5bWaaSbaaSqaaiaadQga aeqaaaaakmaabmaabaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabe aakiabes7aKjaadAhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGL PaaacqGHsisldaWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaacaWGQb GaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqa aaaakiabes7aKjaadAhadaWgaaWcbaGaamyAaaqabaaaaa@5878@

Finally, substituting the latter identity into the virtual work equation, applying the divergence theorem, using the linear momentum balance equation and boundary conditions on σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaC4Wdaaa@32F8@  and δv(y) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiaacIcacaWH5bGaai ykaaaa@35DF@  we obtain the required result.

 

 

Second version of the principle of virtual work

 

The converse of this statement is much more interesting and useful.  Suppose that σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  satisfies the virtual work equation

V σ ij δ D ij dV+ V ρ d v i dt δ v i dV V ρ b i δ v i dV S 2 t i δ v i dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaacqaHdpWCkmaaBaaale aacaWGPbGaamOAaaqabaGccqaH0oazcaWGebWaaSbaaSqaaiaadMga caWGQbaabeaajaaWcaaMc8UaamizaiaadAfacqGHRaWkkmaapefaja aWbaGaeqyWdiNcdaWcaaqaaiaadsgacaWG2bWaaSbaaSqaaiaadMga aeqaaaGcbaGaamizaiaadshaaaqcaaSaeqiTdqMaamODaOWaaSbaaS qaaiaadMgaaeqaaaqcbaCaaiaadAfaaeqajmaWcqGHRiI8aOGaamiz aiaadAfajaaWcqGHsislkmaapefajaaWbaGaeqyWdiNaamOyaOWaaS baaSqaaiaadMgaaeqaaKaaalabes7aKjaadAhakmaaBaaaleaacaWG PbaabeaajaaWcaWGKbGaamOvaiabgkHiTOWaa8quaKaaahaacaWG0b GcdaWgaaWcbaGaamyAaaqabaqcaaSaeqiTdqMaamODaOWaaSbaaSqa aiaadMgaaeqaaaqcbaCaaiaadofalmaaBaaajiaWbaGaaGOmaaqaba aajeaWbeqcdaSaey4kIipaaKqaahaacaWGwbaabeqcdaSaey4kIipa aSqaaiaadAfaaeqaniabgUIiYdGccaWGKbGaamyqaiabg2da9iaaic daaaa@79C5@

for all virtual velocity fields δv(y) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiaacIcacaWH5bGaai ykaaaa@35DF@ .  Then the stress field must satisfy

 

1. The boundary condition n i σ ij = t j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaki abeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcaWG0bWa aSbaaSqaaiaadQgaaeqaaaaa@39E7@  on S 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIYaaabeaaaa a@32A0@

 

2. The linear momentum balance equation   σ ji y j +ρ b i =ρ d v i dt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamOAaiaadMgaaeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaa caWGQbaabeaaaaGccqGHRaWkcqaHbpGCcaWGIbWaaSbaaSqaaiaadM gaaeqaaOGaeyypa0JaeqyWdi3aaSaaaeaacaWGKbGaamODamaaBaaa leaacaWGPbaabeaaaOqaaiaadsgacaWG0baaaaaa@4621@

 

 

The significance of this result is that it gives us an alternative way to solve for a stress field that satisfies the linear momentum balance equation, which avoids having to differentiate the stress.  It is not easy to differentiate functions accurately in the computer, but it is easy to integrate them.  The virtual work statement is the starting point for any finite element solution involving deformable solids.

 

Proof: Follow the same preliminary steps as before, i..e.

σ ij δ D ij = 1 2 σ ij δ v i y j + δ v j y i = 1 2 σ ji δ v i y j + σ ij δ v j y i = σ ji δ v i y j σ ji v i y j = y j σ ji δ v i σ ji y j δ v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaamyAai aadQgaaeqaaOGaeqiTdqMaamiramaaBaaaleaacaWGPbGaamOAaaqa baGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiabeo8aZnaaBa aaleaacaWGPbGaamOAaaqabaGcdaqadaqaamaalaaabaGaeyOaIyRa eqiTdqMaamODamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadM hadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciIT cqaH0oazcaWG2bWaaSbaaSqaaiaadQgaaeqaaaGcbaGaeyOaIyRaam yEamaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaacqGH9aqp daWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaeq4Wdm3aaSbaaS qaaiaadQgacaWGPbaabeaakmaalaaabaGaeyOaIyRaeqiTdqMaamOD amaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcba GaamOAaaqabaaaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaadMgacaWG QbaabeaakmaalaaabaGaeyOaIyRaeqiTdqMaamODamaaBaaaleaaca WGQbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaamyAaaqabaaa aaGccaGLOaGaayzkaaGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadQgaca WGPbaabeaakmaalaaabaGaeyOaIyRaeqiTdqMaamODamaaBaaaleaa caWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqaba aaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabeaakmaalaaa baGaeyOaIyRaamODamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2k aadMhadaWgaaWcbaGaamOAaaqabaaaaOGaeyypa0ZaaSaaaeaacqGH ciITaeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaakmaabm aabaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabeaakiabes7aKjaa dAhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGHsislda WcaaqaaiabgkGi2kabeo8aZnaaBaaaleaacaWGQbGaamyAaaqabaaa keaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaakiabes7aKj aadAhadaWgaaWcbaGaamyAaaqabaaaaaa@A6F3@

and substitute into the virtual work equation

V y j σ ji δ v i σ ji y j δ v i dV+ V ρ d v i dt δ v i dV V ρ b i δ v i dV S 2 t i δ v i dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaakmaacmaabaWaaSaaae aacqGHciITaeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaa kmaabmaabaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabeaakiabes 7aKjaadAhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGH sisldaWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaacaWGQbGaamyAaa qabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaakiab es7aKjaadAhadaWgaaWcbaGaamyAaaqabaGccaaMc8oacaGL7bGaay zFaaqcaaSaamizaiaadAfacqGHRaWkkmaapefajaaWbaGaeqyWdiNc daWcaaqaaiaadsgacaWG2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaam izaiaadshaaaqcaaSaeqiTdqMaamODaOWaaSbaaSqaaiaadMgaaeqa aaqcbaCaaiaadAfaaeqajmaWcqGHRiI8aOGaamizaiaadAfajaaWcq GHsislkmaapefajaaWbaGaeqyWdiNaamOyaOWaaSbaaSqaaiaadMga aeqaaKaaalabes7aKjaadAhakmaaBaaaleaacaWGPbaabeaajaaWca WGKbGaamOvaiabgkHiTOWaa8quaKaaahaacaWG0bGcdaWgaaWcbaGa amyAaaqabaqcaaSaeqiTdqMaamODaOWaaSbaaSqaaiaadMgaaeqaaa qcbaCaaiaadofalmaaBaaajiaWbaGaaGOmaaqabaaajeaWbeqcdaSa ey4kIipaaKqaahaacaWGwbaabeqcdaSaey4kIipaaSqaaiaadAfaae qaniabgUIiYdGccaWGKbGaamyqaiabg2da9iaaicdaaaa@8F51@

Apply the divergence theorem to the first term in the first integral, and recall that δv=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiabg2da9iaaicdaaa a@3544@  on S 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaaaa a@329F@ , we see that

V σ ji y j +ρ b i ρ d v i dt δ v i dV + S 2 σ ji n j t i δ v i dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0Yaa8quaKaaahaakmaacmaaba WaaSaaaeaacqGHciITcqaHdpWCdaWgaaWcbaGaamOAaiaadMgaaeqa aaGcbaGaeyOaIyRaamyEamaaBaaaleaacaWGQbaabeaaaaGccqGHRa WkcqaHbpGCcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaeqyW di3aaSaaaeaacaWGKbGaamODamaaBaaaleaacaWGPbaabeaaaOqaai aadsgacaWG0baaaiaaykW7aiaawUhacaGL9baajaaWcqaH0oazcaWG 2bGcdaWgaaqcbaCaaiaadMgaaeqaaKaaalaadsgacaWGwbaaleaaca WGwbaabeqdcqGHRiI8aOGaey4kaSYaa8quaeaadaqadaqaaiabeo8a ZnaaBaaaleaacaWGQbGaamyAaaqabaGccaWGUbWaaSbaaSqaaiaadQ gaaeqaaOGaeyOeI0IaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjk aiaawMcaaiabes7aKjaadAhadaWgaaWcbaGaamyAaaqabaaabaGaam 4uamaaBaaameaacaaIYaaabeaaaSqab0Gaey4kIipakiaadsgacaWG bbGaeyypa0JaaGimaaaa@6D2E@

Since this must hold for all virtual velocity fields we could choose

δ v i =f(y) σ ji y j +ρ b i ρ d v i dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaakiabg2da9iaadAgacaGGOaGaaCyEaiaacMcadaGadaqaamaa laaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabeaaaO qaaiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSIa eqyWdiNaamOyamaaBaaaleaacaWGPbaabeaakiabgkHiTiabeg8aYn aalaaabaGaamizaiaadAhadaWgaaWcbaGaamyAaaqabaaakeaacaWG KbGaamiDaaaacaaMc8oacaGL7bGaayzFaaaaaa@51D5@

where f(y)=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWH5bGaaiykaiabg2 da9iaaicdaaaa@35E6@  is an arbitrary function that is positive everywhere inside the solid, but is equal to zero on S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uaaaa@31B8@ .  For this choice, the virtual work equation reduces to

V f y σ ji y j +ρ b i ρ d v i dt σ ki y k +ρ b i ρ d v i dt dV =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0Yaa8quaKaaahaakiaadAgada qadaqaaiaahMhaaiaawIcacaGLPaaadaGadaqaamaalaaabaGaeyOa IyRaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabeaaaOqaaiabgkGi2k aadMhadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSIaeqyWdiNaamOy amaaBaaaleaacaWGPbaabeaakiabgkHiTiabeg8aYnaalaaabaGaam izaiaadAhadaWgaaWcbaGaamyAaaqabaaakeaacaWGKbGaamiDaaaa caaMc8oacaGL7bGaayzFaaWaaiWaaeaadaWcaaqaaiabgkGi2kabeo 8aZnaaBaaaleaacaWGRbGaamyAaaqabaaakeaacqGHciITcaWG5bWa aSbaaSqaaiaadUgaaeqaaaaakiabgUcaRiabeg8aYjaadkgadaWgaa WcbaGaamyAaaqabaGccqGHsislcqaHbpGCdaWcaaqaaiaadsgacaWG 2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaamizaiaadshaaaGaaGPaVd Gaay5Eaiaaw2haaKaaalaadsgacaWGwbaaleaacaWGwbaabeqdcqGH RiI8aOGaeyypa0JaaGimaaaa@6F5E@

and since the integrand is positive everywhere the only way the equation can be satisfied is if

σ ji y j +ρ b i =ρ d v i dt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaamOAaiaadMgaaeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaa caWGQbaabeaaaaGccqGHRaWkcqaHbpGCcaWGIbWaaSbaaSqaaiaadM gaaeqaaOGaeyypa0JaeqyWdi3aaSaaaeaacaWGKbGaamODamaaBaaa leaacaWGPbaabeaaaOqaaiaadsgacaWG0baaaaaa@4621@

Given this, we can next choose a virtual velocity field that satisfies

δ v i = σ ji n j t i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaakiabg2da9maabmaabaGaeq4Wdm3aaSbaaSqaaiaadQgacaWG Pbaabeaakiaad6gadaWgaaWcbaGaamOAaaqabaGccqGHsislcaWG0b WaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaa@402B@

on S 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIYaaabeaaaa a@32A0@ .  For this choice (and noting that the volume integral is zero) the virtual work equation reduces to

S 2 σ ji n j t i σ ki n k t i dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaqadaqaaiabeo8aZnaaBa aaleaacaWGQbGaamyAaaqabaGccaWGUbWaaSbaaSqaaiaadQgaaeqa aOGaeyOeI0IaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawM caamaabmaabaGaeq4Wdm3aaSbaaSqaaiaadUgacaWGPbaabeaakiaa d6gadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWG0bWaaSbaaSqaai aadMgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGtbWaaSbaaWqaaiaa ikdaaeqaaaWcbeqdcqGHRiI8aOGaamizaiaadgeacqGH9aqpcaaIWa aaaa@4D73@

Again, the integrand is positive everywhere (it is a perfect square) and so can vanish only if

σ ji n j = t i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPb aabeaakiaad6gadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcaWG0bWa aSbaaSqaaiaadMgaaeqaaaaa@39E7@

as stated.

 

 

 

2.5.5 The Virtual Work equation in terms of other stress measures.

 

It is often convenient to implement the virtual work equation in a finite element code using different stress measures. 

 

To do so, we define

 

1. The actual deformation gradient in the solid F ij = δ ij + u i x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa ey4kaSYaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadMgaaeqaaa GcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaaaaa@4070@

 

2. The virtual rate of change of deformation gradient  δ F ˙ ij = δ v i y k F kj = δ v i x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabmOrayaacaWaaSbaaSqaai aadMgacaWGQbaabeaakiabg2da9maalaaabaGaeyOaIyRaeqiTdqMa amODamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaa WcbaGaam4AaaqabaaaaOGaamOramaaBaaaleaacaWGRbGaamOAaaqa baGccqGH9aqpdaWcaaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcba GaamyAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqa aaaaaaa@4BD4@

 

3. The virtual rate of change of Lagrange strain δ E ˙ ij = 1 2 F ki δ F ˙ kj +δ F ˙ ki F kj MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabmyrayaacaWaaSbaaSqaai aadMgacaWGQbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikda aaWaaeWaaeaacaWGgbWaaSbaaSqaaiaadUgacaWGPbaabeaakiabes 7aKjqadAeagaGaamaaBaaaleaacaWGRbGaamOAaaqabaGccqGHRaWk cqaH0oazceWGgbGbaiaadaWgaaWcbaGaam4AaiaadMgaaeqaaOGaam OramaaBaaaleaacaWGRbGaamOAaaqabaaakiaawIcacaGLPaaaaaa@493D@

 

 

In addition, we define (in the usual way)

 

1. Kirchhoff stress  τ ij =J σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaGPaVlabes8a0PWaaSbaaSqaai aadMgacaWGQbaabeaakiabg2da9iaadQeacqaHdpWCdaWgaaWcbaGa amyAaiaadQgaaeqaaaaa@3CB7@

 

2. Nominal (First Piola-Kirchhoff) stress   S ij =J F ik 1 σ kj MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaam4uaOWaaSbaaSqaaiaadMgaca WGQbaabeaakiabg2da9iaadQeacaWGgbWaa0baaSqaaiaadMgacaWG RbaabaGaeyOeI0IaaGymaaaakiabeo8aZnaaBaaaleaacaWGRbGaam OAaaqabaaaaa@3EC8@

 

3. Material (Second Piola-Kirchhoff) stress   Σ ij =J F ik 1 σ kl F jl 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVlabfo6atnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpcaWGkbGaamOramaaDaaaleaacaWGPbGa am4AaaqaaiabgkHiTiaaigdaaaGccqaHdpWCdaWgaaWcbaGaam4Aai aadYgaaeqaaOGaamOramaaDaaaleaacaWGQbGaamiBaaqaaiabgkHi Tiaaigdaaaaaaa@44B8@

 

 

In terms of these quantities, the virtual work equation may be expressed as

V 0 S ij δ F ˙ ji d V 0 + V 0 ρ 0 d v i dt δ v i d V 0 V 0 ρ 0 b i δ v i d V 0 S 2 t i δ v i dA=0 V 0 S ij δ F ˙ ji d V 0 + V 0 ρ 0 d v i dt δ v i d V 0 V 0 ρ 0 b i δ v i d V 0 S 2 t i δ v i dA=0 V 0 Σ ij δ E ˙ ij d V 0 + V 0 ρ 0 d v i dt δ v i d V 0 V 0 ρ 0 b i δ v i d V 0 S 2 t i δ v i dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqcaaCaaiaadofakmaaBa aaleaacaWGPbGaamOAaaqabaGccqaH0oazceWGgbGbaiaadaWgaaWc baGaamOAaiaadMgaaeqaaKaaalaaykW7caWGKbGaamOvaOWaaSbaaS qaaiaaicdaaeqaaKaaalabgUcaROWaa8quaKaaahaacqaHbpGCkmaa BaaaleaacaaIWaaabeaakmaalaaabaGaamizaiaadAhadaWgaaWcba GaamyAaaqabaaakeaacaWGKbGaamiDaaaajaaWcqaH0oazcaWG2bGc daWgaaWcbaGaamyAaaqabaaajeaWbaGaamOvaSWaaSbaaWqaaiaaic daaeqaaaqcbaCabKWaalabgUIiYdGccaWGKbGaamOvamaaBaaaleaa caaIWaaabeaajaaWcqGHsislkmaapefajaaWbaGaeqyWdiNcdaWgaa WcbaGaaGimaaqabaqcaaSaamOyaOWaaSbaaSqaaiaadMgaaeqaaKaa alabes7aKjaadAhakmaaBaaaleaacaWGPbaabeaajaaWcaWGKbGaam OvaOWaaSbaaSqaaiaaicdaaeqaaKaaalabgkHiTOWaa8quaKaaahaa caWG0bGcdaWgaaWcbaGaamyAaaqabaqcaaSaeqiTdqMaamODaOWaaS baaSqaaiaadMgaaeqaaaqcbaCaaiaadofalmaaBaaajiaWbaGaaGOm aaqabaaajeaWbeqcdaSaey4kIipaaKqaahaacaWGwbWcdaWgaaadba GaaGimaaqabaaajeaWbeqcdaSaey4kIipaaSqaaiaadAfadaWgaaad baGaaGimaaqabaaaleqaniabgUIiYdGccaWGKbGaamyqaiabg2da9i aaicdaaeaadaWdrbqcaaCaaiaadofakmaaBaaaleaacaWGPbGaamOA aaqabaGccqaH0oazceWGgbGbaiaadaWgaaWcbaGaamOAaiaadMgaae qaaKaaalaaykW7caWGKbGaamOvaOWaaSbaaSqaaiaaicdaaeqaaKaa alabgUcaROWaa8quaKaaahaacqaHbpGCkmaaBaaaleaacaaIWaaabe aakmaalaaabaGaamizaiaadAhadaWgaaWcbaGaamyAaaqabaaakeaa caWGKbGaamiDaaaajaaWcqaH0oazcaWG2bGcdaWgaaWcbaGaamyAaa qabaaajeaWbaGaamOvaSWaaSbaaWqaaiaaicdaaeqaaaqcbaCabKWa alabgUIiYdGccaWGKbGaamOvamaaBaaaleaacaaIWaaabeaajaaWcq GHsislkmaapefajaaWbaGaeqyWdiNcdaWgaaWcbaGaaGimaaqabaqc aaSaamOyaOWaaSbaaSqaaiaadMgaaeqaaKaaalabes7aKjaadAhakm aaBaaaleaacaWGPbaabeaajaaWcaWGKbGaamOvaOWaaSbaaSqaaiaa icdaaeqaaKaaalabgkHiTOWaa8quaKaaahaacaWG0bGcdaWgaaWcba GaamyAaaqabaqcaaSaeqiTdqMaamODaOWaaSbaaSqaaiaadMgaaeqa aaqcbaCaaiaadofalmaaBaaajiaWbaGaaGOmaaqabaaajeaWbeqcda Saey4kIipaaKqaahaacaWGwbWcdaWgaaadbaGaaGimaaqabaaajeaW beqcdaSaey4kIipaaSqaaiaadAfadaWgaaadbaGaaGimaaqabaaale qaniabgUIiYdGccaWGKbGaamyqaiabg2da9iaaicdaaeaadaWdrbqc aaCaaiabfo6atPWaaSbaaSqaaiaadMgacaWGQbaabeaakiabes7aKj qadweagaGaamaaBaaaleaacaWGPbGaamOAaaqabaqcaaSaaGPaVlaa dsgacaWGwbGcdaWgaaWcbaGaaGimaaqabaqcaaSaey4kaSIcdaWdrb qcaaCaaiabeg8aYPWaaSbaaSqaaiaaicdaaeqaaOWaaSaaaeaacaWG KbGaamODamaaBaaaleaacaWGPbaabeaaaOqaaiaadsgacaWG0baaaK aaalabes7aKjaadAhakmaaBaaaleaacaWGPbaabeaaaKqaahaacaWG wbWcdaWgaaadbaGaaGimaaqabaaajeaWbeqcdaSaey4kIipakiaads gacaWGwbWaaSbaaSqaaiaaicdaaeqaaKaaalabgkHiTOWaa8quaKaa ahaacqaHbpGCkmaaBaaaleaacaaIWaaabeaajaaWcaWGIbGcdaWgaa WcbaGaamyAaaqabaqcaaSaeqiTdqMaamODaOWaaSbaaSqaaiaadMga aeqaaKaaalaadsgacaWGwbGcdaWgaaWcbaGaaGimaaqabaqcaaSaey OeI0IcdaWdrbqcaaCaaiaadshakmaaBaaaleaacaWGPbaabeaajaaW cqaH0oazcaWG2bGcdaWgaaWcbaGaamyAaaqabaaajeaWbaGaam4uaS WaaSbaaKGaahaacaaIYaaabeaaaKqaahqajmaWcqGHRiI8aaqcbaCa aiaadAfalmaaBaaameaacaaIWaaabeaaaKqaahqajmaWcqGHRiI8aa WcbaGaamOvamaaBaaameaacaaIWaaabeaaaSqab0Gaey4kIipakiaa dsgacaWGbbGaeyypa0JaaGimaaaaaa@2BE3@

 

Note that all the volume integrals are now taken over the undeformed solid MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  this is convenient for computer applications, because the shape of the undeformed solid is known.  The area integral is evaluated over the deformed solid, unfortunately.  It can be expressed as an equivalent integral over the undeformed solid, but the result is messy and will be deferred until we actually need to do it.

 

 

 

2.5.6 The Virtual Work equation for infinitesimal deformations.

 

For infintesimal motions, the Cauchy, Nominal, and Material stress tensors are equal; and the virtual stretch rate can be replaced by the virtual infinitesimal strain rate

δ ε ˙ ij = 1 2 δ v i x j + δ v j x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqyTduMbaiaadaWgaaWcba GaamyAaiaadQgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOm aaaadaqadaqaamaalaaabaGaeyOaIyRaeqiTdqMaamODamaaBaaale aacaWGPbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqa baaaaOGaey4kaSYaaSaaaeaacqGHciITcqaH0oazcaWG2bWaaSbaaS qaaiaadQgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaa beaaaaaakiaawIcacaGLPaaaaaa@4CC4@

There is no need to distinguish between the volume or surface area of the deformed and undeformed solid.  The virtual work equation can thus be expressed as

V 0 σ ij δ ε ˙ ij d V 0 + V 0 ρ 0 d v i dt δ v i d V 0 V 0 ρ 0 b i δ v i d V 0 S 2 t i δ v i d A 0 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaacqaHdpWCkmaaBaaale aacaWGPbGaamOAaaqabaGccqaH0oazcuaH1oqzgaGaamaaBaaaleaa caWGPbGaamOAaaqabaqcaaSaaGPaVlaadsgacaWGwbGcdaWgaaWcba GaaGimaaqabaqcaaSaey4kaSIcdaWdrbqcaaCaaiabeg8aYPWaaSba aSqaaiaaicdaaeqaaOWaaSaaaeaacaWGKbGaamODamaaBaaaleaaca WGPbaabeaaaOqaaiaadsgacaWG0baaaKaaalabes7aKjaadAhakmaa BaaaleaacaWGPbaabeaaaKqaahaacaWGwbWcdaWgaaadbaGaaGimaa qabaaajeaWbeqcdaSaey4kIipakiaadsgacaWGwbWaaSbaaSqaaiaa icdaaeqaaKaaalabgkHiTOWaa8quaKaaahaacqaHbpGCkmaaBaaale aacaaIWaaabeaajaaWcaWGIbGcdaWgaaWcbaGaamyAaaqabaqcaaSa eqiTdqMaamODaOWaaSbaaSqaaiaadMgaaeqaaKaaalaadsgacaWGwb GcdaWgaaWcbaGaaGimaaqabaqcaaSaeyOeI0IcdaWdrbqcaaCaaiaa dshakmaaBaaaleaacaWGPbaabeaajaaWcqaH0oazcaWG2bGcdaWgaa WcbaGaamyAaaqabaaajeaWbaGaam4uaSWaaSbaaKGaahaacaaIYaaa beaaaKqaahqajmaWcqGHRiI8aaqcbaCaaiaadAfalmaaBaaameaaca aIWaaabeaaaKqaahqajmaWcqGHRiI8aaWcbaGaamOvamaaBaaameaa caaIWaaabeaaaSqab0Gaey4kIipakiaadsgacaWGbbWaaSbaaSqaai aaicdaaeqaaOGaeyypa0JaaGimaaaa@8707@

for all kinematically admissible velocity fields.

 

 

As a special case, this expression can be applied to a quasi-static state with v i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaaki abg2da9iaaicdaaaa@34BF@ . Then, for a stress state σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  satisfying the static equilibrium equation σ ij / x i + ρ 0 b j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadMga aeqaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamOyam aaBaaaleaacaWGQbaabeaakiabg2da9iaaicdaaaa@41B4@  and boundary conditions σ ij n j = t i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad6gadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcaWG0bWa aSbaaSqaaiaadMgaaeqaaaaa@39E7@  on S 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIYaaabeaaaa a@32A0@ , the virtual work equation reduces to

V 0 σ ij δ ε ij d V 0 = V 0 ρ 0 b i δ u i d V 0 + S 2 t i δ u i dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaacqaHdpWCkmaaBaaale aacaWGPbGaamOAaaqabaGccqaH0oazcqaH1oqzdaWgaaWcbaGaamyA aiaadQgaaeqaaKaaalaaykW7caWGKbGaamOvaOWaaSbaaSqaaiaaic daaeqaaaqaaiaadAfadaWgaaadbaGaaGimaaqabaaaleqaniabgUIi YdGccqGH9aqpdaWdrbqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaki aadkgadaWgaaWcbaGaamyAaaqabaGccqaH0oazcaWG1bWaaSbaaSqa aiaadMgaaeqaaOGaamizaiaadAfadaWgaaWcbaGaaGimaaqabaGccq GHRaWkdaWdrbqaaiaadshadaWgaaWcbaGaamyAaaqabaGccqaH0oaz caWG1bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadgeaaSqaaiaado fadaWgaaadbaGaaGOmaaqabaaaleqaniabgUIiYdaaleaacaWGwbWa aSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRiI8aaaa@60D2@

In which δ u i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamyDamaaBaaaleaacaWGPb aabeaaaaa@3499@  are kinematically admissible displacements components (δ u i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabes7aKjaadwhadaWgaaWcba GaamyAaaqabaGccqGH9aqpcaaIWaaaaa@370F@  on S2) and δ ε ij = δ u i / x j +δ u j / x i /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaeqyTdu2aaSbaaSqaaiaadM gacaWGQbaabeaakiabg2da9maabmaabaGaeyOaIyRaeqiTdqMaamyD amaaBaaaleaacaWGPbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaS qaaiaadQgaaeqaaOGaey4kaSIaeyOaIyRaeqiTdqMaamyDamaaBaaa leaacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadM gaaeqaaaGccaGLOaGaayzkaaGaai4laiaaikdaaaa@4DE7@ .

 

Conversely, if  the stress state σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  satisfies

V 0 σ ij δ ε ij d V 0 = V 0 ρ 0 b i δ u i d V 0 + S 2 t i δ u i dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaacqaHdpWCkmaaBaaale aacaWGPbGaamOAaaqabaGccqaH0oazcqaH1oqzdaWgaaWcbaGaamyA aiaadQgaaeqaaKaaalaaykW7caWGKbGaamOvaOWaaSbaaSqaaiaaic daaeqaaaqaaiaadAfadaWgaaadbaGaaGimaaqabaaaleqaniabgUIi YdGccqGH9aqpdaWdrbqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaki aadkgadaWgaaWcbaGaamyAaaqabaGccqaH0oazcaWG1bWaaSbaaSqa aiaadMgaaeqaaOGaamizaiaadAfadaWgaaWcbaGaaGimaaqabaGccq GHRaWkdaWdrbqaaiaadshadaWgaaWcbaGaamyAaaqabaGccqaH0oaz caWG1bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadgeaaSqaaiaado fadaWgaaadbaGaaGOmaaqabaaaleqaniabgUIiYdaaleaacaWGwbWa aSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRiI8aaaa@60D2@

for every set of kinematically admissible virtual displacements, then the stress state σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  satisfies the static equilibrium equation σ ij / x i + ρ 0 b j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadMga aeqaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamOyam aaBaaaleaacaWGQbaabeaakiabg2da9iaaicdaaaa@41B4@  and boundary conditions σ ij n j = t i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad6gadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcaWG0bWa aSbaaSqaaiaadMgaaeqaaaaa@39E7@  on S 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIYaaabeaaaa a@32A0@