8.8 Constraints, Interfaces and Contact.

 

This section describes three important extensions of the finite element method: enforcing general constraints on the motion of nodes in a mesh; a technique to model fracture along a weak interface in a solid; and methods for modeling contact between solids.

 

 

 

8.8.1 Enforcing constraints on the motion of nodes

 

We often need to constrain the motion of some subset of nodes in a mesh in ways that do not resemble the standard displacement boundary conditions that were discussed in earlier sections of this chapter.   A few examples include:

 

· Connecting together two incompatible meshes

 

· Connecting the end of a beam (which has rotational degrees of freedom) to a meshed 3D or 2D solid (the nodes in this mesh only have displacement degrees of freedom)

 

· Enforcing periodic boundary conditions on a representative volume element of a microstructure.

 

Two methods are available to enforce this type of constraint: (i) the so-called ‘penalty method,’  which enforces the condition approximately, by penalizing departures from the constraint using a stiff spring; and (ii) Lagrange multipliers, which enforce the constraint exactly using reaction forces that are calculated as part of the solution, but at the cost of increasing the number of unknowns in the finite element equations, and (for dynamic problems) making explicit time integration of the equation of motion more difficult.   Both approaches will be summarized briefly in this section.

 

 

Enforcing constraints with a penalty: Suppose that we wish to run a finite element simulation that models quasi-static deformation of a solid, but need to constrain the motion of some subset of M nodes in the mesh to move together in some way.   The relevant constraint equation(s) could be written in the general form

g (k) ( u i a )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaCaaaleqabaGaaiikaiaadU gacaGGPaaaaOGaaiikaiaadwhadaqhaaWcbaGaamyAaaqaaiaadgga aaGccaGGPaGaeyypa0JaaGimaaaa@3A6A@

where a is the index of the M nodes; and k is an index identifying one of the constraint equations.   The ‘penalty’ method enforces the constraints approximately, by applying a large force to each constrained node that acts to oppose any deviation from the required motion.   The restoring force on the ath node is usually defined to be

p i a = k G g (k) g (k) u i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaDaaaleaacaWGPbaabaGaam yyaaaakiabg2da9iabgkHiTmaaqafabaGaam4raiaadEgadaahaaWc beqaaiaacIcacaWGRbGaaiykaaaakmaalaaabaGaeyOaIyRaam4zam aaCaaaleqabaGaaiikaiaadUgacaGGPaaaaaGcbaGaeyOaIyRaamyD amaaDaaaleaacaWGPbaabaGaamyyaaaaaaaabaGaam4Aaaqab0Gaey yeIuoaaaa@4656@

where G MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raaaa@31AC@  is a large constant that resembles a spring stiffness.  In some applications it may be necessary to assign different values of G to each constraint so that the forces from the various constraints have similar magnitudes, but we will not pursue this here.

 

We can account for the constraint by modifying the principle of virtual work to include the rate of work done by the restoring forces to the virtual work equation.  For example, the finite element equations for a small strain problem (eg the hypoelasticity problem solved in Section 8.8.3) now have the form

R σ ij ε kl ( u i a ) N a x j dV+ k G g (k) g (k) u i a R b i N a dV R t i * N a dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOWaamWaaeaacqaH1oqzdaWgaaWcbaGaam4Aaiaa dYgaaeqaaOGaaiikaiaadwhadaqhaaWcbaGaamyAaaqaaiaadggaaa GccaGGPaaacaGLBbGaayzxaaWaaSaaaeaacqGHciITcaWGobWaaWba aSqabeaacaWGHbaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQb aabeaaaaGccaWGKbGaamOvaiabgUcaRmaaqafabaGaam4raiaadEga daahaaWcbeqaaiaacIcacaWGRbGaaiykaaaakmaalaaabaGaeyOaIy Raam4zamaaCaaaleqabaGaaiikaiaadUgacaGGPaaaaaGcbaGaeyOa IyRaamyDamaaDaaaleaacaWGPbaabaGaamyyaaaaaaaabaGaam4Aaa qab0GaeyyeIuoakiabgkHiTmaapefabaGaamOyamaaBaaaleaacaWG Pbaabeaakiaad6eadaahaaWcbeqaaiaadggaaaGccaWGKbGaamOvai abgkHiTmaapefabaGaamiDamaaDaaaleaacaWGPbaabaGaaiOkaaaa kiaad6eadaahaaWcbeqaaiaadggaaaGccaWGKbGaamyqaaWcbaGaey OaIyRaamOuaaqab0Gaey4kIipaaSqaaiaadkfaaeqaniabgUIiYdaa leaacaWGsbaabeqdcqGHRiI8aOGaeyypa0JaaGimaiaaykW7caaMc8 UaaGPaVdaa@781D@

The additional term can be added to any of the finite element equations listed in this chapter.  In each case the result is a system of linear (if the solid is linear elastic and the constraint happens to be linear) or nonlinear (more common) equations that can be solved for the unknown nodal displacements.  

 

As usual, the solution (for a general nonlinear system) is found using Newton-Raphson iteration, which means repeatedly solving a set of linear equations

K aibk d w k b + R i a F i a =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaakiaadsgacaWG3bWaa0baaSqaaiaadUgaaeaa caWGIbaaaOGaey4kaSIaamOuamaaDaaaleaacaWGPbaabaGaamyyaa aakiabgkHiTiaadAeadaqhaaWcbaGaamyAaaqaaiaadggaaaGccqGH 9aqpcaaIWaaaaa@42CB@

 for corrections d w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@34C6@  to the current approximation for the displacement field, where the stiffness and internal force vector now include contributions from the constraints

K aibk = R σ ij ε kl N a x j N b x l dV +G m g (m) u k b g (m) u i a + g (m) 2 g (m) u i a u k b R i a = R σ ij ε kl ( w i b ) N a x j dV +G m g (m) g (m) u i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGlbWaaSbaaSqaaiaadggaca WGPbGaamOyaiaadUgaaeqaaOGaeyypa0Zaa8quaeaadaWcaaqaaiab gkGi2kabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaakeaacqGHci ITcqaH1oqzdaWgaaWcbaGaam4AaiaadYgaaeqaaaaakmaalaaabaGa eyOaIyRaamOtamaaCaaaleqabaGaamyyaaaaaOqaaiabgkGi2kaadI hadaWgaaWcbaGaamOAaaqabaaaaOWaaSaaaeaacqGHciITcaWGobWa aWbaaSqabeaacaWGIbaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaaca WGSbaabeaaaaGccaWGKbGaamOvaaWcbaGaamOuaaqab0Gaey4kIipa kiaaykW7caaMc8Uaey4kaSIaaGPaVlaadEeadaaeqbqaamaabmaaba WaaSaaaeaacqGHciITcaWGNbWaaWbaaSqabeaacaGGOaGaamyBaiaa cMcaaaaakeaacqGHciITcaWG1bWaa0baaSqaaiaadUgaaeaacaWGIb aaaaaakiaaykW7caaMc8+aaSaaaeaacqGHciITcaWGNbWaaWbaaSqa beaacaGGOaGaamyBaiaacMcaaaaakeaacqGHciITcaWG1bWaa0baaS qaaiaadMgaaeaacaWGHbaaaaaakiabgUcaRiaadEgadaahaaWcbeqa aiaacIcacaWGTbGaaiykaaaakmaalaaabaGaeyOaIy7aaWbaaSqabe aacaaIYaaaaOGaam4zamaaCaaaleqabaGaaiikaiaad2gacaGGPaaa aaGcbaGaeyOaIyRaamyDamaaDaaaleaacaWGPbaabaGaamyyaaaaki abgkGi2kaadwhadaqhaaWcbaGaam4AaaqaaiaadkgaaaaaaaGccaGL OaGaayzkaaaaleaacaWGTbaabeqdcqGHris5aOGaaGPaVdqaaiaadk fadaqhaaWcbaGaamyAaaqaaiaadggaaaGccqGH9aqpdaWdrbqaaiab eo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGcdaWadaqaaiabew7aLn aaBaaaleaacaWGRbGaamiBaaqabaGccaGGOaGaam4DamaaDaaaleaa caWGPbaabaGaamOyaaaakiaacMcaaiaawUfacaGLDbaadaWcaaqaai abgkGi2kaad6eadaahaaWcbeqaaiaadggaaaaakeaacqGHciITcaWG 4bWaaSbaaSqaaiaadQgaaeqaaaaakiaadsgacaWGwbaaleaacaWGsb aabeqdcqGHRiI8aOGaaGPaVlabgUcaRiaadEeadaaeqbqaaiaadEga daahaaWcbeqaaiaacIcacaWGTbGaaiykaaaakmaalaaabaGaeyOaIy Raam4zamaaCaaaleqabaGaaiikaiaad2gacaGGPaaaaaGcbaGaeyOa IyRaamyDamaaDaaaleaacaWGPbaabaGaamyyaaaaaaaabaGaamyBaa qab0GaeyyeIuoaaaaa@B9B7@

 

To implement this in a code, we can simply regard each constraint as just another element in the mesh, which connects the nodes that appear in the constraint equation.  The element has its own stiffness matrix and force vector, which can be added to the global system of equations using the usual procedure.

 


 

 

 

As a simple example, suppose that we wish to constrain two nodes a and b in a mesh to have the same displacement.   In this case the element connects nodes a and b, as shown in the figure.  The constraint equation is simply

g= u i a u i b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiabg2da9iaadwhadaqhaaWcba GaamyAaaqaaiaadggaaaGccqGHsislcaWG1bWaa0baaSqaaiaadMga aeaacaWGIbaaaaaa@39C0@

For a two-dimensional mesh, we could choose to order the element degrees of freedom as u el = u 1 a , u 2 a , u 1 b , u 2 b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaamyzaiaadY gaaaGccqGH9aqpdaWadaqaaiaadwhadaqhaaWcbaGaaGymaaqaaiaa dggaaaGccaGGSaGaamyDamaaDaaaleaacaaIYaaabaGaamyyaaaaki aacYcacaWG1bWaa0baaSqaaiaaigdaaeaacaWGIbaaaOGaaiilaiaa dwhadaqhaaWcbaGaaGOmaaqaaiaadkgaaaaakiaawUfacaGLDbaaaa a@4444@ , in which case the stiffness and force are simply

r el =G u 1 a u 1 b u 2 a u 2 b ( u 1 a u 1 b ) ( u 2 a u 2 b ) T k el = G 0 G 0 0 G 0 G G 0 G 0 0 G 0 G MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHYbWaaSbaaSqaaiaadwgaca WGSbaabeaakiabg2da9iaadEeadaWadaqaauaabeqabqaaaaqaaiaa dwhadaqhaaWcbaGaaGymaaqaaiaadggaaaGccqGHsislcaWG1bWaa0 baaSqaaiaaigdaaeaacaWGIbaaaaGcbaGaamyDamaaDaaaleaacaaI YaaabaGaamyyaaaakiabgkHiTiaadwhadaqhaaWcbaGaaGOmaaqaai aadkgaaaaakeaacqGHsislcaGGOaGaamyDamaaDaaaleaacaaIXaaa baGaamyyaaaakiabgkHiTiaadwhadaqhaaWcbaGaaGymaaqaaiaadk gaaaGccaGGPaaabaGaeyOeI0IaaiikaiaadwhadaqhaaWcbaGaaGOm aaqaaiaadggaaaGccqGHsislcaWG1bWaa0baaSqaaiaaikdaaeaaca WGIbaaaOGaaiykaaaaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfa aaaakeaacaWHRbWaaSbaaSqaaiaadwgacaWGSbaabeaakiabg2da9m aadmaabaqbaeqabqabaaaaaeaacaWGhbaabaGaaGimaaqaaiabgkHi TiaadEeaaeaacaaIWaaabaGaaGimaaqaaiaadEeaaeaacaaIWaaaba GaeyOeI0Iaam4raaqaaiabgkHiTiaadEeaaeaacaaIWaaabaGaam4r aaqaaiaaicdaaeaacaaIWaaabaGaeyOeI0Iaam4raaqaaiaaicdaae aacaWGhbaaaaGaay5waiaaw2faaaaaaa@6DB1@

 

The penalty method is simple to implement, can be added to any standard FEA equations, and can be used in both static and dynamic analyses.   It has two drawbacks: (i) the constraint is not satisfied exactly, and (ii) the penalty coefficient G has to be chosen carefully: if G is too small, the constraint will not be satisfied, and if it is too large, it will make the stiffness matrix poorly conditioned, or make the stable time step in an explicit dynamic simulation very small.  G is usually chosen by trial and error: start with some rough guess, then check and see if the constraint is violated too severely.   If so, G must be increased (try increasing it by a factor of 10).  If the constraint is satisfied it may be possible to reduce G.   A more sophisticated approach is to estimate the magnitude of the stiffness matrix before the constraint is applied (e.g. find the average value of its diagonal), and then choose G to be some multiple (eg. 104) of the stiffness measure. 

 


A simple illustration of a penalty element in action is shown in the figure.  The mesh consists of two separate hexahedral elements, as shown on the left.   Penalty elements are used to constrain the degrees of freedom on the four lower nodes of the top element to be equal to those on the four nodes on the top face of the bottom element.    The base of the lower element is prevented from moving vertically, while a prescribed vertical displacement Δ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqeaaa@3246@  is applied to the top face of the upper element.   The graph plots the variation of the error in the constraint and the condition number of the global stiffness matrix as a function of the normalized penalty stiffness.   For low values of G/L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaac+cacaWGmbaaaa@3330@  the matrix has a low condition number but the constraint is not enforced accurately; as G/L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaac+cacaWGmbaaaa@3330@  increases the error diminishes, at the cost of an increase in the condition number.

 

A code that runs the test in this example is provided in the file FEM_Penaltyconstraint.m (along with input file Tie_constraint_example.txt) at

https://github.com/albower/Applied_Mechanics_of_Solids/

 

 

Enforcing constraints with a Lagrange Multiplier in static or implicit dynamic computations: There is a second, more sophisticated, way to enforce constraints.   The basic idea is simple: in the previous section the constraint was satisfied approximately by applying forces to the constrained nodes in the mesh. The forces were proportional to the deviation from the constraint, analogous to a linear spring.  Lagrange multipliers are reaction forces that enforce the constraint exactly.       

 

As before, we start by re-arranging the constraint equations into the form

g (k) ( u i a )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaCaaaleqabaGaaiikaiaadU gacaGGPaaaaOGaaiikaiaadwhadaqhaaWcbaGaamyAaaqaaiaadgga aaGccaGGPaGaeyypa0JaaGimaaaa@3A6A@

where a is the index of the M nodes; and k is an index identifying one of the constraint equations.  Each constraint is assigned an unknown reaction force (the Lagrange multiplier) λ k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaa aa@33B0@ , which must be determined along with the unknown displacements.    In addition, the work done by the reaction force must be added to the virtual work equation, which (using the VWE for a hypoelastic solid as a representative example) now takes the form

R σ ij ε kl ( u i a ) N a x j dV+ g (k) u i a λ k R b i N a dV R t i * N a dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOWaamWaaeaacqaH1oqzdaWgaaWcbaGaam4Aaiaa dYgaaeqaaOGaaiikaiaadwhadaqhaaWcbaGaamyAaaqaaiaadggaaa GccaGGPaaacaGLBbGaayzxaaWaaSaaaeaacqGHciITcaWGobWaaWba aSqabeaacaWGHbaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQb aabeaaaaGccaWGKbGaamOvaiabgUcaRmaalaaabaGaeyOaIyRaam4z amaaCaaaleqabaGaaiikaiaadUgacaGGPaaaaaGcbaGaeyOaIyRaam yDamaaDaaaleaacaWGPbaabaGaamyyaaaaaaGccqaH7oaBdaWgaaWc baGaam4AaaqabaGccqGHsisldaWdrbqaaiaadkgadaWgaaWcbaGaam yAaaqabaGccaWGobWaaWbaaSqabeaacaWGHbaaaOGaamizaiaadAfa cqGHsisldaWdrbqaaiaadshadaqhaaWcbaGaamyAaaqaaiaacQcaaa GccaWGobWaaWbaaSqabeaacaWGHbaaaOGaamizaiaadgeaaSqaaiab gkGi2kaadkfaaeqaniabgUIiYdaaleaacaWGsbaabeqdcqGHRiI8aa WcbaGaamOuaaqab0Gaey4kIipakiabg2da9iaaicdacaaMc8UaaGPa VlaaykW7aaa@73B7@

The unknown Lagrange multipliers are found by including the constraint equations in the global system.

 

The virtual work equation and the constraint equations are solved concurrently for the unknown displacements and Lagrange multipliers using Newton-Raphson iteration.  Since we need to solve for both displacements and Lagrange multipliers, the iteration proceeds by repeatedly solving a set of linear equations

K aibk d w k b + 2 g (m) u i a u k b λ m d w k b + g (m) u i a d ω m + R i a + g (m) u i a λ m F i a =0 g (m) u k b d w k b + g (m) =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGlbWaaSbaaSqaaiaadggaca WGPbGaamOyaiaadUgaaeqaaOGaamizaiaadEhadaqhaaWcbaGaam4A aaqaaiaadkgaaaGccqGHRaWkdaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadEgadaahaaWcbeqaaiaacIcacaWGTbGaaiykaaaa aOqaaiabgkGi2kaadwhadaqhaaWcbaGaamyAaaqaaiaadggaaaGccq GHciITcaWG1bWaa0baaSqaaiaadUgaaeaacaWGIbaaaaaakiabeU7a SnaaBaaaleaacaWGTbaabeaakiaadsgacaWG3bWaa0baaSqaaiaadU gaaeaacaWGIbaaaOGaey4kaSYaaSaaaeaacqGHciITcaWGNbWaaWba aSqabeaacaGGOaGaamyBaiaacMcaaaaakeaacqGHciITcaWG1bWaa0 baaSqaaiaadMgaaeaacaWGHbaaaaaakiaadsgacqaHjpWDdaWgaaWc baGaamyBaaqabaGccqGHRaWkcaWGsbWaa0baaSqaaiaadMgaaeaaca WGHbaaaOGaey4kaSYaaSaaaeaacqGHciITcaWGNbWaaWbaaSqabeaa caGGOaGaamyBaiaacMcaaaaakeaacqGHciITcaWG1bWaa0baaSqaai aadMgaaeaacaWGHbaaaaaakiabeU7aSnaaBaaaleaacaWGTbaabeaa kiabgkHiTiaadAeadaqhaaWcbaGaamyAaaqaaiaadggaaaGccqGH9a qpcaaIWaaabaWaaSaaaeaacqGHciITcaWGNbWaaWbaaSqabeaacaGG OaGaamyBaiaacMcaaaaakeaacqGHciITcaWG1bWaa0baaSqaaiaadU gaaeaacaWGIbaaaaaakiaadsgacaWG3bWaa0baaSqaaiaadUgaaeaa caWGIbaaaOGaey4kaSIaam4zamaaCaaaleqabaGaaiikaiaad2gaca GGPaaaaOGaeyypa0JaaGimaaaaaa@87A4@

for corrections d w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@34C6@  to the current approximation for the displacement field and corrections d ω k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeM8a3naaBaaaleaacaWGRb aabeaaaaa@34B2@  to the Lagrange multipliers. The additional contributions to the equation system from the constraints are shown explicitly, and as usual

K aibk = R σ ij ε kl N a x j N b x l dV R i a = R σ ij ε kl ( w i b ) N a x j dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaakiabg2da9maapefabaWaaSaaaeaacqGHciIT cqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRaeq yTdu2aaSbaaSqaaiaadUgacaWGSbaabeaaaaGcdaWcaaqaaiabgkGi 2kaad6eadaahaaWcbeqaaiaadggaaaaakeaacqGHciITcaWG4bWaaS baaSqaaiaadQgaaeqaaaaakmaalaaabaGaeyOaIyRaamOtamaaCaaa leqabaGaamOyaaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamiBaa qabaaaaOGaamizaiaadAfaaSqaaiaadkfaaeqaniabgUIiYdGccaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaamOuamaaDaaaleaacaWGPbaa baGaamyyaaaakiabg2da9maapefabaGaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakmaadmaabaGaeqyTdu2aaSbaaSqaaiaadUgacaWG SbaabeaakiaacIcacaWG3bWaa0baaSqaaiaadMgaaeaacaWGIbaaaO GaaiykaaGaay5waiaaw2faamaalaaabaGaeyOaIyRaamOtamaaCaaa leqabaGaamyyaaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaa qabaaaaOGaamizaiaadAfaaSqaaiaadkfaaeqaniabgUIiYdGccaaM c8oaaa@871B@

 

The extra terms from the constraints look scary, but it turns out that Lagrange multipliers can be added very easily to a standard static FEA code.   We simply create a new element for each constraint.   The element connects all the nodes in the constraint, and has one extra node, which has the Lagrange multiplier as an unknown degree of freedom.   The stiffness matrix and force vector for the constraint element are

r el = g (m) u 1 1 λ m g (m) u 2 1 λ m g (m) u 1 2 λ m g (m) T k el = 2 g (m) u 1 1 u 1 1 λ m 2 g (m) u 1 1 u 2 1 λ m 2 g (m) u 1 1 u 1 2 λ m g (m) u 1 1 2 g (m) u 2 1 u 1 1 λ m 2 g (m) u 2 1 u 2 1 λ m g (m) u 2 1 2 g (m) u 1 2 u 1 1 λ m 2 g (m) u 1 2 u 2 1 λ m g (m) u 1 2 g (m) u 1 1 g (m) u 2 1 g (m) u 1 2 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHYbWaaSbaaSqaaiaadwgaca WGSbaabeaakiabg2da9maadmaabaqbaeqabeqbaaaabaWaaSaaaeaa cqGHciITcaWGNbWaaWbaaSqabeaacaGGOaGaamyBaiaacMcaaaaake aacqGHciITcaWG1bWaa0baaSqaaiaaigdaaeaacaaIXaaaaaaakiab eU7aSnaaBaaaleaacaWGTbaabeaaaOqaamaalaaabaGaeyOaIyRaam 4zamaaCaaaleqabaGaaiikaiaad2gacaGGPaaaaaGcbaGaeyOaIyRa amyDamaaDaaaleaacaaIYaaabaGaaGymaaaaaaGccqaH7oaBdaWgaa WcbaGaamyBaaqabaaakeaadaWcaaqaaiabgkGi2kaadEgadaahaaWc beqaaiaacIcacaWGTbGaaiykaaaaaOqaaiabgkGi2kaadwhadaqhaa WcbaGaaGymaaqaaiaaikdaaaaaaOGaeq4UdW2aaSbaaSqaaiaad2ga aeqaaaGcbaGaeS47IWeabaGaam4zamaaCaaaleqabaGaaiikaiaad2 gacaGGPaaaaaaaaOGaay5waiaaw2faamaaCaaaleqabaGaamivaaaa aOqaaiaahUgadaWgaaWcbaGaamyzaiaadYgaaeqaaOGaeyypa0Zaam WaaeaafaqabeqbfaaaaaqaamaalaaabaGaeyOaIy7aaWbaaSqabeaa caaIYaaaaOGaam4zamaaCaaaleqabaGaaiikaiaad2gacaGGPaaaaa GcbaGaeyOaIyRaamyDamaaDaaaleaacaaIXaaabaGaaGymaaaakiab gkGi2kaadwhadaqhaaWcbaGaaGymaaqaaiaaigdaaaaaaOGaeq4UdW 2aaSbaaSqaaiaad2gaaeqaaaGcbaWaaSaaaeaacqGHciITdaahaaWc beqaaiaaikdaaaGccaWGNbWaaWbaaSqabeaacaGGOaGaamyBaiaacM caaaaakeaacqGHciITcaWG1bWaa0baaSqaaiaaigdaaeaacaaIXaaa aOGaeyOaIyRaamyDamaaDaaaleaacaaIYaaabaGaaGymaaaaaaGccq aH7oaBdaWgaaWcbaGaamyBaaqabaaakeaadaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaakiaadEgadaahaaWcbeqaaiaacIcacaWGTb GaaiykaaaaaOqaaiabgkGi2kaadwhadaqhaaWcbaGaaGymaaqaaiaa igdaaaGccqGHciITcaWG1bWaa0baaSqaaiaaigdaaeaacaaIYaaaaa aakiabeU7aSnaaBaaaleaacaWGTbaabeaaaOqaaiabl+Uimbqaamaa laaabaGaeyOaIyRaam4zamaaCaaaleqabaGaaiikaiaad2gacaGGPa aaaaGcbaGaeyOaIyRaamyDamaaDaaaleaacaaIXaaabaGaaGymaaaa aaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadE gadaahaaWcbeqaaiaacIcacaWGTbGaaiykaaaaaOqaaiabgkGi2kaa dwhadaqhaaWcbaGaaGOmaaqaaiaaigdaaaGccqGHciITcaWG1bWaa0 baaSqaaiaaigdaaeaacaaIXaaaaaaakiabeU7aSnaaBaaaleaacaWG TbaabeaaaOqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaO Gaam4zamaaCaaaleqabaGaaiikaiaad2gacaGGPaaaaaGcbaGaeyOa IyRaamyDamaaDaaaleaacaaIYaaabaGaaGymaaaakiabgkGi2kaadw hadaqhaaWcbaGaaGOmaaqaaiaaigdaaaaaaOGaeq4UdW2aaSbaaSqa aiaad2gaaeqaaaGcbaaabaaabaWaaSaaaeaacqGHciITcaWGNbWaaW baaSqabeaacaGGOaGaamyBaiaacMcaaaaakeaacqGHciITcaWG1bWa a0baaSqaaiaaikdaaeaacaaIXaaaaaaaaOqaamaalaaabaGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaOGaam4zamaaCaaaleqabaGaaiikaiaa d2gacaGGPaaaaaGcbaGaeyOaIyRaamyDamaaDaaaleaacaaIXaaaba GaaGOmaaaakiabgkGi2kaadwhadaqhaaWcbaGaaGymaaqaaiaaigda aaaaaOGaeq4UdW2aaSbaaSqaaiaad2gaaeqaaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWGNbWaaWbaaSqabeaacaGG OaGaamyBaiaacMcaaaaakeaacqGHciITcaWG1bWaa0baaSqaaiaaig daaeaacaaIYaaaaOGaeyOaIyRaamyDamaaDaaaleaacaaIYaaabaGa aGymaaaaaaGccqaH7oaBdaWgaaWcbaGaamyBaaqabaaakeaaaeaaae aadaWcaaqaaiabgkGi2kaadEgadaahaaWcbeqaaiaacIcacaWGTbGa aiykaaaaaOqaaiabgkGi2kaadwhadaqhaaWcbaGaaGymaaqaaiaaik daaaaaaaGcbaGaeSO7I0eabaaabaaabaaabaGaeSO7I0eabaWaaSaa aeaacqGHciITcaWGNbWaaWbaaSqabeaacaGGOaGaamyBaiaacMcaaa aakeaacqGHciITcaWG1bWaa0baaSqaaiaaigdaaeaacaaIXaaaaaaa aOqaamaalaaabaGaeyOaIyRaam4zamaaCaaaleqabaGaaiikaiaad2 gacaGGPaaaaaGcbaGaeyOaIyRaamyDamaaDaaaleaacaaIYaaabaGa aGymaaaaaaaakeaadaWcaaqaaiabgkGi2kaadEgadaahaaWcbeqaai aacIcacaWGTbGaaiykaaaaaOqaaiabgkGi2kaadwhadaqhaaWcbaGa aGymaaqaaiaaikdaaaaaaaGcbaGaeS47IWeabaGaaGimaaaaaiaawU facaGLDbaaaaaa@1ABA@

 


 

As a simple example, suppose that we wish to constrain two nodes a and b in a two-dimensional mesh to have the same displacement in the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B5@  direction.   In this case the element connects nodes a and b, as shown in the figure.  The constraint equation is simply

g= u 1 a u 1 b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiabg2da9iaadwhadaqhaaWcba GaaGymaaqaaiaadggaaaGccqGHsislcaWG1bWaa0baaSqaaiaaigda aeaacaWGIbaaaaaa@395A@

For a 2D mesh, we could choose to order the element degrees of freedom as u el = u 1 a , u 2 a , u 1 b , u 2 b ,λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaamyzaiaadY gaaaGccqGH9aqpdaWadaqaaiaadwhadaqhaaWcbaGaaGymaaqaaiaa dggaaaGccaGGSaGaamyDamaaDaaaleaacaaIYaaabaGaamyyaaaaki aacYcacaWG1bWaa0baaSqaaiaaigdaaeaacaWGIbaaaOGaaiilaiaa dwhadaqhaaWcbaGaaGOmaaqaaiaadkgaaaGccaGGSaGaeq4UdWgaca GLBbGaayzxaaaaaa@46A8@ , in which case the stiffness and force are

r el = λ 0 λ 0 u 1 a u 1 b T k el = 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHYbWaaSbaaSqaaiaadwgaca WGSbaabeaakiabg2da9maadmaabaqbaeqabeqbaaaabaGaeq4UdWga baGaaGimaaqaaiabgkHiTiabeU7aSbqaaiaaicdaaeaacaWG1bWaa0 baaSqaaiaaigdaaeaacaWGHbaaaOGaeyOeI0IaamyDamaaDaaaleaa caaIXaaabaGaamOyaaaaaaaakiaawUfacaGLDbaadaahaaWcbeqaai aadsfaaaaakeaacaWHRbWaaSbaaSqaaiaadwgacaWGSbaabeaakiab g2da9maadmaabaqbaeqabuqbaaaaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiabgkHiTiaaigdaaeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaigdaaeaacaaIWa aabaGaeyOeI0IaaGymaaqaaiaaicdaaeaacaaIWaaaaaGaay5waiaa w2faaaaaaa@5E99@

 

It may seem odd to include both components of displacement for the nodes in the vector of element degrees of freedom: this is not essential, but makes it easier to add the contribution from the Lagrange multiplier element to the global equation system.  If (as in the preceding section) we wish to force nodes a and b to have the same displacement in all directions, we simply create a separate Lagrange multiplier element for each displacement component.

 

A final observation is helpful if you are thinking of using Lagrange multipliers in your code. Some old equation solvers which solve the finite element linear system of equations by Gaussian elimination without pivoting may have difficulties handling the zero diagonal that appears in the stiffness for the Lagrange multiplier degrees of freedom. Fortunately, this is rarely a problem with modern sparse equation solvers.

 

A code that implements Lagrange multipliers is provided in the file FEM_LagrangeMultiplierconstraint.m (along with input file Tie_constraint_example.txt) at

https://github.com/albower/Applied_Mechanics_of_Solids/

 

 

Enforcing constraints with a Lagrange Multiplier in explicit dynamic computations. Explicit dynamic computations were described in Section 8.2.4 (for the special case of a linear elastic solid).  More generally, they are an efficient way to solve equations of motion of the form

M ab u ¨ i b + R i a = F i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaWGHbGaamOyaa qabaGcceWG1bGbamaadaqhaaWcbaGaamyAaaqaaiaadkgaaaGccqGH RaWkcaWGsbWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGaeyypa0Jaam OramaaDaaaleaacaWGPbaabaGaamyyaaaaaaa@3E5B@

where (for small strains, but nonlinear material behavior)

R i b = R σ ij u k b N a x j dV F i a = R b i N a dV+ R t i * N a dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuamaaDaaaleaacaWGPbaabaGaam Oyaaaakiabg2da9maapefabaGaeq4Wdm3aaSbaaSqaaiaadMgacaWG QbaabeaakmaadmaabaGaamyDamaaDaaaleaacaWGRbaabaGaamOyaa aaaOGaay5waiaaw2faamaalaaabaGaeyOaIyRaamOtamaaCaaaleqa baGaamyyaaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqaba aaaOGaamizaiaadAfaaSqaaiaadkfaaeqaniabgUIiYdGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOramaaDaaale aacaWGPbaabaGaamyyaaaakiabg2da9maapefabaGaamOyamaaBaaa leaacaWGPbaabeaakiaad6eadaahaaWcbeqaaiaadggaaaGccaWGKb GaamOvaiabgUcaRmaapefabaGaamiDamaaDaaaleaacaWGPbaabaGa aiOkaaaakiaad6eadaahaaWcbeqaaiaadggaaaGccaWGKbGaamyqaa WcbaGaeyOaIyRaamOuaaqab0Gaey4kIipaaSqaaiaadkfaaeqaniab gUIiYdaaaa@6CD3@

are the internal and external force vectors, and M ab MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaWGHbGaamOyaa qabaaaaa@33AB@  is the diagonal ‘lumped’ mass matrix for a finite element mesh.   Without constraints, this equation is usually solved using the explicit dynamic version of the more general ‘Newmark’ time integration scheme described in Section 8.2.4.  This works as follows: we are given the initial nodal velocities v i a (0) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaaIWaGaaiykaaaa@35F9@  and displacements u i a (0) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaaIWaGaaiykaaaa@35F8@ .  The time-stepping starts by computing (at time t=0) the initial acceleration

a i a (0)= M ab 1 R i b u i a (0) + F i b (0) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaaIWaGaaiykaiabg2da9iaad2eadaqhaaWcbaGa amyyaiaadkgaaeaacqGHsislcaaIXaaaaOWaamWaaeaacqGHsislca WGsbWaa0baaSqaaiaadMgaaeaacaWGIbaaaOWaaeWaaeaacaWG1bWa a0baaSqaaiaadMgaaeaacaWGHbaaaOGaaiikaiaaicdacaGGPaaaca GLOaGaayzkaaGaey4kaSIaamOramaaDaaaleaacaWGPbaabaGaamOy aaaakiaacIcacaaIWaGaaiykaaGaay5waiaaw2faaaaa@4D97@ ,

Then, for successive time steps

 

1. Calculate the displacements at time t+Δt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabgUcaRiabfs5aejaadshaaa a@351A@  as

u i a (t+Δt) u i a (t)+Δt u ˙ i a (t)+ Δ t 2 2 a i a (t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaWG0bGaey4kaSIaeuiLdqKaamiDaiaacMcacqGH ijYUcaWG1bWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGaaiikaiaads hacaGGPaGaey4kaSIaeuiLdqKaamiDaiqadwhagaGaamaaDaaaleaa caWGPbaabaGaamyyaaaakiaacIcacaWG0bGaaiykaiabgUcaRmaala aabaGaeuiLdqKaamiDamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikda aaGaamyyamaaDaaaleaacaWGPbaabaGaamyyaaaakiaacIcacaWG0b Gaaiykaaaa@5364@

 

2. Calculate the accelerations at time t+Δt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabgUcaRiabfs5aejaadshaaa a@351A@

a i a (t+Δt)= M ab 1 R i b u i a (t+Δt) + F i b (t+Δt) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaWG0bGaey4kaSIaeuiLdqKaamiDaiaacMcacqGH 9aqpcaWGnbWaa0baaSqaaiaadggacaWGIbaabaGaeyOeI0IaaGymaa aakmaadmaabaGaeyOeI0IaamOuamaaDaaaleaacaWGPbaabaGaamOy aaaakmaabmaabaGaamyDamaaDaaaleaacaWGPbaabaGaamyyaaaaki aacIcacaWG0bGaey4kaSIaeuiLdqKaamiDaiaacMcaaiaawIcacaGL PaaacqGHRaWkcaWGgbWaa0baaSqaaiaadMgaaeaacaWGIbaaaOGaai ikaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiykaaGaay5waiaaw2fa aaaa@5817@

Recall that M is diagonal, so the equation solving is trivial: this is the main advantage of explicit dynamics.

 

3. Update the velocity as

v i a (t+Δt) v i a (t)+ Δt 2 a i a (t)+ a i a (t+Δt) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaWG0bGaey4kaSIaeuiLdqKaamiDaiaacMcacqGH ijYUcaWG2bWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGaaiikaiaads hacaGGPaGaey4kaSYaaSaaaeaacqqHuoarcaWG0baabaGaaGOmaaaa daWadaqaaiaadggadaqhaaWcbaGaamyAaaqaaiaadggaaaGccaGGOa GaamiDaiaacMcacqGHRaWkcaWGHbWaa0baaSqaaiaadMgaaeaacaWG HbaaaOGaaiikaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiykaaGaay 5waiaaw2faaaaa@552A@

 

 

We now wish to solve a modified problem in which some subset of nodes is constrained by equations of the form

g (k) ( u i a )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zamaaCaaaleqabaGaaiikaiaadU gacaGGPaaaaOGaaiikaiaadwhadaqhaaWcbaGaamyAaaqaaiaadgga aaGccaGGPaGaeyypa0JaaGimaaaa@3A6A@

(the initial displacements must satisfy the constraints).   It is not possible to enforce this type of constraint using Lagrange multipliers in the standard explicit dynamic Newmark algorithm, because the Lagrange multipliers have no mass.   Instead, a two-step ‘predictor-corrector’ method  is used for this purpose, as follows.   The procedure begins by calculating the initial accelerations a i a (0) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaaIWaGaaiykaaaa@35E4@  using the usual expressions.  Then, for successive time steps:

 

1. Predictor step: Compute predictors for the accelerations, velocity and displacement a ¯ (t+Δt), v ¯ (t+Δt), u ¯ (t+Δt) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyyayaaraGaaiikaiaadshacqGHRa WkcqqHuoarcaWG0bGaaiykaiaacYcaceWH2bGbaebacaGGOaGaamiD aiabgUcaRiabfs5aejaadshacaGGPaGaaiilaiqahwhagaqeaiaacI cacaWG0bGaey4kaSIaeuiLdqKaamiDaiaacMcaaaa@4628@  (without enforcing constraints) using the standard Newmark procedure:

u i a (t+Δt) u i a (t)+Δt u ˙ i a (t)+ Δ t 2 2 a i a (t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaWG0bGaey4kaSIaeuiLdqKaamiDaiaacMcacqGH ijYUcaWG1bWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGaaiikaiaads hacaGGPaGaey4kaSIaeuiLdqKaamiDaiqadwhagaGaamaaDaaaleaa caWGPbaabaGaamyyaaaakiaacIcacaWG0bGaaiykaiabgUcaRmaala aabaGaeuiLdqKaamiDamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikda aaGaamyyamaaDaaaleaacaWGPbaabaGaamyyaaaakiaacIcacaWG0b Gaaiykaaaa@5364@

a ¯ i a (t+Δt)= M ab 1 R i b u i a (t+Δt) + F i b (t+Δt) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyyayaaraWaa0baaSqaaiaadMgaae aacaWGHbaaaOGaaiikaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiyk aiabg2da9iaad2eadaqhaaWcbaGaamyyaiaadkgaaeaacqGHsislca aIXaaaaOWaamWaaeaacqGHsislcaWGsbWaa0baaSqaaiaadMgaaeaa caWGIbaaaOWaaeWaaeaacaWG1bWaa0baaSqaaiaadMgaaeaacaWGHb aaaOGaaiikaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiykaaGaayjk aiaawMcaaiabgUcaRiaadAeadaqhaaWcbaGaamyAaaqaaiaadkgaaa GccaGGOaGaamiDaiabgUcaRiabfs5aejaadshacaGGPaaacaGLBbGa ayzxaaaaaa@582F@

v ¯ i a (t+Δt) v i a (t)+ Δt 2 a i a (t)+ a ¯ i a (t+Δt) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmODayaaraWaa0baaSqaaiaadMgaae aacaWGHbaaaOGaaiikaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiyk aiabgIKi7kaadAhadaqhaaWcbaGaamyAaaqaaiaadggaaaGccaGGOa GaamiDaiaacMcacqGHRaWkdaWcaaqaaiabfs5aejaadshaaeaacaaI YaaaamaadmaabaGaamyyamaaDaaaleaacaWGPbaabaGaamyyaaaaki aacIcacaWG0bGaaiykaiabgUcaRiqadggagaqeamaaDaaaleaacaWG PbaabaGaamyyaaaakiaacIcacaWG0bGaey4kaSIaeuiLdqKaamiDai aacMcaaiaawUfacaGLDbaaaaa@555A@

u ¯ i a (t+Δt) u i a (t)+Δt v ¯ i a (t+Δt)+ Δ t 2 2 a ¯ i a (t+Δt) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyDayaaraWaa0baaSqaaiaadMgaae aacaWGHbaaaOGaaiikaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiyk aiabgIKi7kaadwhadaqhaaWcbaGaamyAaaqaaiaadggaaaGccaGGOa GaamiDaiaacMcacqGHRaWkcqqHuoarcaWG0bGabmODayaaraWaa0ba aSqaaiaadMgaaeaacaWGHbaaaOGaaiikaiaadshacqGHRaWkcqqHuo arcaWG0bGaaiykaiabgUcaRmaalaaabaGaeuiLdqKaamiDamaaCaaa leqabaGaaGOmaaaaaOqaaiaaikdaaaGabmyyayaaraWaa0baaSqaai aadMgaaeaacaWGHbaaaOGaaiikaiaadshacqGHRaWkcqqHuoarcaWG 0bGaaiykaaaa@5A26@

 

2. Corrector step: Calculate the correct accelerations for each constrained node, along with the Lagrange multiplier for the constraint, by solving the following system of linear equations

M ab a i b (t+Δt)+ g (m) u i a λ m = M ab a ¯ i b (t+Δt) g (m) u k b a k b (t+Δt)= 1 Δ t 2 g (m) u i a (t) g (m) u k b 1 Δt v k b (t)+ 1 2 a k b (t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGnbWaaSbaaSqaaiaadggaca WGIbaabeaakiaadggadaqhaaWcbaGaamyAaaqaaiaadkgaaaGccaGG OaGaamiDaiabgUcaRiabfs5aejaadshacaGGPaGaey4kaSYaaSaaae aacqGHciITcaWGNbWaaWbaaSqabeaacaGGOaGaamyBaiaacMcaaaaa keaacqGHciITcaWG1bWaa0baaSqaaiaadMgaaeaacaWGHbaaaaaaki abeU7aSnaaBaaaleaacaWGTbaabeaakiabg2da9iaad2eadaWgaaWc baGaamyyaiaadkgaaeqaaOGabmyyayaaraWaa0baaSqaaiaadMgaae aacaWGIbaaaOGaaiikaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiyk aaqaamaalaaabaGaeyOaIyRaam4zamaaCaaaleqabaGaaiikaiaad2 gacaGGPaaaaaGcbaGaeyOaIyRaamyDamaaDaaaleaacaWGRbaabaGa amOyaaaaaaGccaWGHbWaa0baaSqaaiaadUgaaeaacaWGIbaaaOGaai ikaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiykaiabg2da9iabgkHi TmaalaaabaGaaGymaaqaaiabfs5aejaadshadaahaaWcbeqaaiaaik daaaaaaOGaam4zamaaCaaaleqabaGaaiikaiaad2gacaGGPaaaaOWa aeWaaeaacaWG1bWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGaaiikai aadshacaGGPaaacaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacqGHciIT caWGNbWaaWbaaSqabeaacaGGOaGaamyBaiaacMcaaaaakeaacqGHci ITcaWG1bWaa0baaSqaaiaadUgaaeaacaWGIbaaaaaakmaabmaabaWa aSaaaeaacaaIXaaabaGaeuiLdqKaamiDaaaacaWG2bWaa0baaSqaai aadUgaaeaacaWGIbaaaOGaaiikaiaadshacaGGPaGaey4kaSYaaSaa aeaacaaIXaaabaGaaGOmaaaacaWGHbWaa0baaSqaaiaadUgaaeaaca WGIbaaaOGaaiikaiaadshacaGGPaaacaGLOaGaayzkaaaaaaa@93F9@

and then, update the velocity and displacement for the constrained nodes using the standard Newmark algorithm with the corrected accelerations

v i a (t+Δt) v i a (t)+ Δt 2 a i a (t)+ a i a (t+Δt) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaWG0bGaey4kaSIaeuiLdqKaamiDaiaacMcacqGH ijYUcaWG2bWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGaaiikaiaads hacaGGPaGaey4kaSYaaSaaaeaacqqHuoarcaWG0baabaGaaGOmaaaa daWadaqaaiaadggadaqhaaWcbaGaamyAaaqaaiaadggaaaGccaGGOa GaamiDaiaacMcacqGHRaWkcaWGHbWaa0baaSqaaiaadMgaaeaacaWG HbaaaOGaaiikaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiykaaGaay 5waiaaw2faaaaa@552A@

u ¯ i a (t+Δt) u i a (t)+Δt v i a (t+Δt)+ Δ t 2 2 a i a (t+Δt) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyDayaaraWaa0baaSqaaiaadMgaae aacaWGHbaaaOGaaiikaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiyk aiabgIKi7kaadwhadaqhaaWcbaGaamyAaaqaaiaadggaaaGccaGGOa GaamiDaiaacMcacqGHRaWkcqqHuoarcaWG0bGaamODamaaDaaaleaa caWGPbaabaGaamyyaaaakiaacIcacaWG0bGaey4kaSIaeuiLdqKaam iDaiaacMcacqGHRaWkdaWcaaqaaiabfs5aejaadshadaahaaWcbeqa aiaaikdaaaaakeaacaaIYaaaaiaadggadaqhaaWcbaGaamyAaaqaai aadggaaaGccaGGOaGaamiDaiabgUcaRiabfs5aejaadshacaGGPaaa aa@59F6@

 

For example, to constrain two nodes a and b in a two-dimensional mesh to have the same displacement in the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaaCyzaOWaaSbaaKqaafaacaaIXa aabeaaaaa@3347@  direction.   The constraint equation is then

g= u 1 a u 1 b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4zaiabg2da9iaadwhadaqhaaWcba GaaGymaaqaaiaadggaaaGccqGHsislcaWG1bWaa0baaSqaaiaaigda aeaacaWGIbaaaaaa@395A@

The equation system for the corrector step is then

 


where m aa , m bb MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBamaaBaaaleaacaWGHbGaamyyaa qabaGccaGGSaGaamyBamaaBaaaleaacaWGIbGaamOyaaqabaaaaa@3770@  are the lumped masses of nodes a and b. Notice that if all constraints are ties between two degrees of freedom, they may be treated independently.  This requires only a solution of a 3x3 linear system for each tie at each time-step, which can be done quickly.

 

The predictor-corrector algorithm can be derived as follows.    The constrained equation system (with the correct accelerations) has the form

M ab a i b + R i a + g (m) u i a λ m = F i a g (k) ( u i a )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGnbWaaSbaaSqaaiaadggaca WGIbaabeaakiaadggadaqhaaWcbaGaamyAaaqaaiaadkgaaaGccqGH RaWkcaWGsbWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGaey4kaSYaaS aaaeaacqGHciITcaWGNbWaaWbaaSqabeaacaGGOaGaamyBaiaacMca aaaakeaacqGHciITcaWG1bWaa0baaSqaaiaadMgaaeaacaWGHbaaaa aakiabeU7aSnaaBaaaleaacaWGTbaabeaakiabg2da9iaadAeadaqh aaWcbaGaamyAaaqaaiaadggaaaaakeaacaWGNbWaaWbaaSqabeaaca GGOaGaam4AaiaacMcaaaGccaGGOaGaamyDamaaDaaaleaacaWGPbaa baGaamyyaaaakiaacMcacqGH9aqpcaaIWaaaaaa@54E5@

The predictor accelerations neglect the constraints, and therefore satisfy

M ab a ¯ i b + R i a = F i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaWGHbGaamOyaa qabaGcceWGHbGbaebadaqhaaWcbaGaamyAaaqaaiaadkgaaaGccqGH RaWkcaWGsbWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGaeyypa0Jaam OramaaDaaaleaacaWGPbaabaGaamyyaaaaaaa@3E55@

Subtracting this from the constrained equation system yields

M ab ( a i b a ¯ i b )+ g (m) u i a λ m =0 g (k) ( u i a )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGnbWaaSbaaSqaaiaadggaca WGIbaabeaakiaacIcacaWGHbWaa0baaSqaaiaadMgaaeaacaWGIbaa aOGaeyOeI0IabmyyayaaraWaa0baaSqaaiaadMgaaeaacaWGIbaaaO GaaiykaiabgUcaRmaalaaabaGaeyOaIyRaam4zamaaCaaaleqabaGa aiikaiaad2gacaGGPaaaaaGcbaGaeyOaIyRaamyDamaaDaaaleaaca WGPbaabaGaamyyaaaaaaGccqaH7oaBdaWgaaWcbaGaamyBaaqabaGc cqGH9aqpcaaIWaaabaGaam4zamaaCaaaleqabaGaaiikaiaadUgaca GGPaaaaOGaaiikaiaadwhadaqhaaWcbaGaamyAaaqaaiaadggaaaGc caGGPaGaeyypa0JaaGimaaaaaa@5455@

We satisfy this equation at the end of the time-step, using the standard Newmark approximation for the displacement

u i a (t+Δt) u i a (t)+Δt v i a (t+Δt)+ Δ t 2 2 a i a (t+Δt) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacIcacaWG0bGaey4kaSIaeuiLdqKaamiDaiaacMcacqGH ijYUcaWG1bWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGaaiikaiaads hacaGGPaGaey4kaSIaeuiLdqKaamiDaiaadAhadaqhaaWcbaGaamyA aaqaaiaadggaaaGccaGGOaGaamiDaiabgUcaRiabfs5aejaadshaca GGPaGaey4kaSYaaSaaaeaacqqHuoarcaWG0bWaaWbaaSqabeaacaaI YaaaaaGcbaGaaGOmaaaacaWGHbWaa0baaSqaaiaadMgaaeaacaWGHb aaaOGaaiikaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiykaaaa@59DE@

Substituting this expression for the displacements and expanding the constraint equation for small Δt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiDaaaa@333F@  then yields

M ab a i b (t+Δt)+ g (m) u i a λ m = M ab a ¯ i b (t+Δt) g (m) u i a (t) + g (m) u k b Δt v k b (t)+ Δ t 2 2 a k b (t)+Δ t 2 a k b (t+Δt) =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGnbWaaSbaaSqaaiaadggaca WGIbaabeaakiaadggadaqhaaWcbaGaamyAaaqaaiaadkgaaaGccaGG OaGaamiDaiabgUcaRiabfs5aejaadshacaGGPaGaey4kaSYaaSaaae aacqGHciITcaWGNbWaaWbaaSqabeaacaGGOaGaamyBaiaacMcaaaaa keaacqGHciITcaWG1bWaa0baaSqaaiaadMgaaeaacaWGHbaaaaaaki abeU7aSnaaBaaaleaacaWGTbaabeaakiabg2da9iaad2eadaWgaaWc baGaamyyaiaadkgaaeqaaOGabmyyayaaraWaa0baaSqaaiaadMgaae aacaWGIbaaaOGaaiikaiaadshacqGHRaWkcqqHuoarcaWG0bGaaiyk aaqaaiaadEgadaahaaWcbeqaaiaacIcacaWGTbGaaiykaaaakmaabm aabaGaamyDamaaDaaaleaacaWGPbaabaGaamyyaaaakiaacIcacaWG 0bGaaiykaaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaeyOaIyRaam 4zamaaCaaaleqabaGaaiikaiaad2gacaGGPaaaaaGcbaGaeyOaIyRa amyDamaaDaaaleaacaWGRbaabaGaamOyaaaaaaGcdaqadaqaaiabfs 5aejaadshacaWG2bWaa0baaSqaaiaadUgaaeaacaWGIbaaaOGaaiik aiaadshacaGGPaGaey4kaSYaaSaaaeaacqqHuoarcaWG0bWaaWbaaS qabeaacaaIYaaaaaGcbaGaaGOmaaaacaWGHbWaa0baaSqaaiaadUga aeaacaWGIbaaaOGaaiikaiaadshacaGGPaGaey4kaSIaeuiLdqKaam iDamaaCaaaleqabaGaaGOmaaaakiaadggadaqhaaWcbaGaam4Aaaqa aiaadkgaaaGccaGGOaGaamiDaiabgUcaRiabfs5aejaadshacaGGPa aacaGLOaGaayzkaaGaeyypa0JaaGimaaaaaa@8C4C@

This can be rearranged into the equation system for the corrector step.

 

In practice, explicit dynamic simulations tend to enforce constraints with the penalty method rather than Lagrange multipliers, because solving for the Lagrange multipliers can slow down the explicit dynamic Newmark algorithm.   The two exceptions are simple tie constraints, which can be enforced without solving large systems of equations, and handling ‘hard’ contact between two solids, where it is preferable to enforce the constraints between contacting nodes and elements exactly.   

 

A code that implements this algorithm is provided in the file FEM_dynamic_constraints.m (along with input file dynamic_constrained_beam.txt) at

https://github.com/albower/Applied_Mechanics_of_Solids/

 

The code animates a vibrating beam, which has a single element connected to its end by Lagrange multiplier constraints.

 

 

 

8.8.2 Modeling interface fracture: Cohesive zone elements

 

Cohesive zones are used to model the nucleation and propagation of cracks along weak interfaces in a solid, as well as to model adhesion between two contacting surfaces.   They are described in detail in Section 3.13.1.   Here, we describe how a cohesive zone can be added to a finite element simulation. To keep things simple, we describe a small displacement cohesive zone element.

 

Example traction-separation law for cohesive interfaces: The figure shows a representative interface between two solids before and after it separates.   The displacement and forces acting on the two surfaces adjacent to the interface are quantified as follows:

 

1. Introduce a basis {n, e 1 , e 2 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaai4Eaiaah6gacaGGSaGaaCyzaO WaaSbaaKqaafaacaaIXaaabeaajaaqcaGGSaGaaCyzaOWaaSbaaKqa afaacaaIYaaabeaajaaqcaGG9baaaa@3A4F@  with e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaaCyzaOWaaSbaaKqaafaacqaHXo qyaeqaaaaa@342B@  in the plane of the interface and n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaaaa@31D7@  normal to it.   The vector n can point in either direction perpendicular to the interface, but once chosen, we designate the surface with normal n as S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@  and that with normal -n as S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@ .

 

2. The relative displacement of two points on S , S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaam4uaOWaaWbaaKqaafqabaGaey OeI0caaKaaajaacYcacaWGtbGcdaahaaqcbauabeaacqGHRaWkaaaa aa@368D@  that are coincident in the undeformed solid Δ= u + u MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiLdiabg2da9iaahwhadaahaaWcbe qaaiabgUcaRaaakiabgkHiTiaahwhadaahaaWcbeqaaiabgkHiTaaa aaa@3822@ , and has components Δ n , Δ 1 , Δ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacqqHuoarcaWLa8+aaSbaaS qaaiaad6gaaeqaaOGaaiilaiabfs5aenaaBaaaleaacaaIXaaabeaa kiaacYcacqqHuoardaWgaaWcbaGaaGOmaaqabaaakiaawUhacaGL9b aaaaa@3D37@  in {n, e 1 , e 2 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaai4Eaiaah6gacaGGSaGaaCyzaO WaaSbaaKqaafaacaaIXaaabeaajaaqcaGGSaGaaCyzaOWaaSbaaKqa afaacaaIYaaabeaajaaqcaGG9baaaa@3A4F@ .  The tangential component of displacement is Δ t = Δ 1 2 + Δ 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaadshaaeqaaO Gaeyypa0ZaaOaaaeaacqqHuoardaqhaaWcbaGaaGymaaqaaiaaikda aaGccqGHRaWkcqqHuoardaqhaaWcbaGaaGOmaaqaaiaaikdaaaaabe aaaaa@3B8C@

 

3. The tractions on the two adjacent surfaces are quantified by the traction components { T 1 , T 2 , T n } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaai4EaiaadsfakmaaBaaajeaqba GaaGymaaqabaqcaaKaaiilaiaadsfakmaaBaaajeaqbaGaaGOmaaqa baqcaaKaaiilaiaadsfakmaaBaaajeaqbaGaamOBaaqabaqcaaKaai yFaaaa@3BB8@  acting on S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@ .

 

Constitutive equations for a cohesive interface relate Δ 1 , Δ 2 , Δ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacqqHuoardaWgaaWcbaGaaG ymaaqabaGccaGGSaGaeuiLdq0aaSbaaSqaaiaaikdaaeqaaOGaaiil aiabfs5aenaaBaaaleaacaWGUbaabeaaaOGaay5Eaiaaw2haaaaa@3BAF@  and { T 1 , T 2 , T n } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaai4EaiaadsfakmaaBaaajeaqba GaaGymaaqabaqcaaKaaiilaiaadsfakmaaBaaajeaqbaGaaGOmaaqa baqcaaKaaiilaiaadsfakmaaBaaajeaqbaGaamOBaaqabaqcaaKaai yFaaaa@3BB8@ .  To keep things simple, in this section we implement a finite element solution for a widely used cohesive zone law originally developed by Xu and Needleman (1995).   The tractions are related to the displacements by:

T α =2 σ max Δ α δ n 1+ Δ n δ n exp 1 Δ n δ n exp Δ t 2 δ n 2 +η d Δ α dt T n = σ max Δ n δ n exp 1 Δ n δ n exp Δ t 2 δ n 2 +η d Δ n dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaajaaqcaWGubGcdaWgaaqcbauaai abeg7aHbqabaqcaaKaeyypa0JaaGOmaiabeo8aZPWaaSbaaKqaafaa ciGGTbGaaiyyaiaacIhaaeqaaOWaaeWaaKaaafaakmaalaaajaaqba GaeuiLdqKcdaWgaaqcbauaaiabeg7aHbqabaaajaaqbaGaeqiTdqMc daWgaaqcbauaaiaad6gaaeqaaaaaaKaaajaawIcacaGLPaaakmaabm aajaaqbaGaaGymaiabgUcaROWaaSaaaKaaafaacqqHuoarkmaaBaaa jeaqbaGaamOBaaqabaaajaaqbaGaeqiTdqMcdaWgaaqcbauaaiaad6 gaaeqaaaaaaKaaajaawIcacaGLPaaaciGGLbGaaiiEaiaacchakmaa bmaajaaqbaGaaGymaiabgkHiTOWaaSaaaKaaafaacqqHuoarkmaaBa aajeaqbaGaamOBaaqabaaajaaqbaGaeqiTdqMcdaWgaaqcbauaaiaa d6gaaeqaaaaaaKaaajaawIcacaGLPaaaciGGLbGaaiiEaiaacchakm aabmaajaaqbaGaeyOeI0IcdaWcaaqcaauaaiabfs5aePWaa0baaKqa afaacaWG0baabaGaaGOmaaaaaKaaafaacqaH0oazkmaaDaaajeaqba GaamOBaaqaaiaaikdaaaaaaaqcaaKaayjkaiaawMcaaiabgUcaRiab eE7aOPWaaSaaaKaaafaacaWGKbGaeuiLdqKcdaWgaaqcbauaaiabeg 7aHbqabaaajaaqbaGaamizaiaadshaaaaakeaajaaqcaWGubGcdaWg aaqcbauaaiaad6gaaeqaaKaaajabg2da9iabeo8aZPWaaSbaaKqaaf aaciGGTbGaaiyyaiaacIhaaeqaaOWaaSaaaKaaafaacqqHuoarkmaa BaaajeaqbaGaamOBaaqabaaajaaqbaGaeqiTdqMcdaWgaaqcbauaai aad6gaaeqaaaaajaaqciGGLbGaaiiEaiaacchakmaabmaajaaqbaGa aGymaiabgkHiTOWaaSaaaKaaafaacqqHuoarkmaaBaaajeaqbaGaam OBaaqabaaajaaqbaGaeqiTdqMcdaWgaaqcbauaaiaad6gaaeqaaaaa aKaaajaawIcacaGLPaaaciGGLbGaaiiEaiaacchakmaabmaajaaqba GaeyOeI0IcdaWcaaqcaauaaiabfs5aePWaa0baaKqaafaacaWG0baa baGaaGOmaaaaaKaaafaacqaH0oazkmaaDaaajeaqbaGaamOBaaqaai aaikdaaaaaaaqcaaKaayjkaiaawMcaaiabgUcaRiabeE7aOPWaaSaa aKaaafaacaWGKbGaeuiLdqKcdaWgaaqcbauaaiaad6gaaeqaaaqcaa uaaiaadsgacaWG0baaaaaaaa@A72C@

where ( σ max , δ n ,η) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaaiikaiabeo8aZPWaaSbaaKqaaf aaciGGTbGaaiyyaiaacIhaaeqaaKaaajaacYcacqaH0oazkmaaBaaa jeaqbaGaamOBaaqabaqcaaKaaiilaiabeE7aOjaacMcaaaa@3E39@  are material properties.   The parameter σ max MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaeq4WdmNcdaWgaaqcbauaaiGac2 gacaGGHbGaaiiEaaqabaaaaa@3635@  is the strength of the interface in tension; δ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdq2aaSbaaSqaaiaad6gaaeqaaa aa@33A4@  is the normal separation corresponding to the maximum stress; and η MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaeq4TdGgaaa@32D5@  is a small viscosity.  In the quasi-static limit the work of separation per unit area for the interface is ϕ= σ max δ n exp(1) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaeqy1dyMaeyypa0Jaeq4WdmNcda WgaaqcbauaaiGac2gacaGGHbGaaiiEaaqabaqcaaKaeqiTdqMcdaWg aaqcbauaaiaad6gaaeqaaKaaajGacwgacaGG4bGaaiiCaiaacIcaca aIXaGaaiykaaaa@4191@  per unit area.  The viscous term is sometimes omitted, but helps to ensure that sudden nucleation of a crack in the interface does not cause convergence problems during the Newton-Raphson solution of the equilibrium equations.  Usually, simulations are run with as small a viscosity as possible.    The variation of normal and tangential traction with normal and tangential relative displacement of the two solids adjacent to the interface is shown in the figure below.

 


 

 

Finite element equations: We account for the cohesive interface in a finite element simulation by adding the work done by the tractions acting on the two sides of the interface to the virtual work equation.   For example, the discrete virtual work equation for a hypoelastic solid becomes

R σ ij ε kl ( u i a ) N a x j dV+ Γ ( T n n i + T α e i (α) ) N a+ N a R b i N a dV R t i * N a dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOWaamWaaeaacqaH1oqzdaWgaaWcbaGaam4Aaiaa dYgaaeqaaOGaaiikaiaadwhadaqhaaWcbaGaamyAaaqaaiaadggaaa GccaGGPaaacaGLBbGaayzxaaWaaSaaaeaacqGHciITcaWGobWaaWba aSqabeaacaWGHbaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQb aabeaaaaGccaWGKbGaamOvaiabgUcaRmaapefabaGaaiikaiaadsfa daWgaaWcbaGaamOBaaqabaGccaWGUbWaaSbaaSqaaiaadMgaaeqaaO Gaey4kaSIaamivamaaBaaaleaacqaHXoqyaeqaaOGaamyzamaaDaaa leaacaWGPbaabaGaaiikaiabeg7aHjaacMcaaaGccaGGPaWaamWaae aacaWGobWaaWbaaSqabeaacaWGHbGaey4kaScaaOGaeyOeI0IaamOt amaaCaaaleqabaGaamyyaiabgkHiTaaaaOGaay5waiaaw2faaaWcba Gaeu4KdCeabeqdcqGHRiI8aOGaeyOeI0Yaa8quaeaacaWGIbWaaSba aSqaaiaadMgaaeqaaOGaamOtamaaCaaaleqabaGaamyyaaaakiaads gacaWGwbGaeyOeI0Yaa8quaeaacaWG0bWaa0baaSqaaiaadMgaaeaa caGGQaaaaOGaamOtamaaCaaaleqabaGaamyyaaaakiaadsgacaWGbb aaleaacqGHciITcaWGsbaabeqdcqGHRiI8aaWcbaGaamOuaaqab0Ga ey4kIipaaSqaaiaadkfaaeqaniabgUIiYdGccqGH9aqpcaaIWaGaaG PaVlaaykW7caaMc8oaaa@81E3@

where ( n i , e i (α) ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaaiikaiaad6gakmaaBaaajeaqba GaamyAaaqabaqcaaKaaiilaiaadwgakmaaDaaajeaqbaGaamyAaaqa aiaacIcacqaHXoqycaGGPaaaaKaaajaacMcaaaa@3B60@  are the components of (n, e α ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaIaaiikaiaah6gacaGGSaGaaCyzaO WaaSbaaKqaGeaacqaHXoqyaeqaaKaaGiaacMcaaaa@3714@  , N a+ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaamOtaOWaaWbaaKqaahqabaGaam yyaiabgUcaRaaaaaa@353A@ , N a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaQaamOtaOWaaWbaaKqaGgqabaGaam yyaiabgkHiTaaaaaa@3505@  denote the interpolation functions for the element faces connecting the nodes adjacent to  S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@  and S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@ , and Γ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaeu4KdCeaaa@3291@  denotes the surface (or line) defining the interface.   The additional term can be added to any of the virtual work equations covered in Chapter 8.   Even if the solid is a linear elastic material, the virtual work equation is nonlinear, because the traction-separation law for the interface is nonlinear.  In addition, the traction-separation law is rate dependent, so the load must be applied in a series of time increments Δt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiDaaaa@333F@ , and at each step the increment of displacement Δ u i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamyDamaaDaaaleaacaWGPb aabaGaamyyaaaaaaa@3541@  must be found by Newton-Raphson iteration.  This means repeatedly solving a set of linear equations

K aibk d w k b + R i a F i a =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaam4saOWaaSbaaKqaafaacaWGHb GaamyAaiaadkgacaWGRbaabeaajaaqcaWGKbGaam4DaOWaa0baaKqa afaacaWGRbaabaGaamOyaaaajaaqcqGHRaWkcaWGsbGcdaqhaaqcba uaaiaadMgaaeaacaWGHbaaaKaaajabgkHiTiaadAeakmaaDaaajeaq baGaamyAaaqaaiaadggaaaqcaaKaeyypa0JaaGimaaaa@4534@

for corrections d w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@34C6@  to the current approximation for the displacement increment, where the stiffness and internal force vector now include contributions from the interfaces

K aibk = R σ ij ε kl N a x j N b x l dV + Γ N b+ N b ( n k T n Δ n + e k (α) T n Δ α n i + e k (β) T α Δ β e i (α) + n k T α Δ n e i (α) ) N a+ N a R i a = R σ ij ε kl ( w i b ) N a x j dV + Γ ( T n n i + T α e i (α) ) N a+ N a dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGlbWaaSbaaSqaaiaadggaca WGPbGaamOyaiaadUgaaeqaaOGaeyypa0Zaa8quaeaadaWcaaqaaiab gkGi2kabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaakeaacqGHci ITcqaH1oqzdaWgaaWcbaGaam4AaiaadYgaaeqaaaaakmaalaaabaGa eyOaIyRaamOtamaaCaaaleqabaGaamyyaaaaaOqaaiabgkGi2kaadI hadaWgaaWcbaGaamOAaaqabaaaaOWaaSaaaeaacqGHciITcaWGobWa aWbaaSqabeaacaWGIbaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaaca WGSbaabeaaaaGccaWGKbGaamOvaaWcbaGaamOuaaqab0Gaey4kIipa kiaaykW7caaMc8oabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabgUcaRmaapefabaWaamWaaeaacaWGobWaaWbaaSqa beaacaWGIbGaey4kaScaaOGaeyOeI0IaamOtamaaCaaaleqabaGaam OyaiabgkHiTaaaaOGaay5waiaaw2faamaabmaabaGaaiikaiaad6ga daWgaaWcbaGaam4AaaqabaGcdaWcaaqaaiabgkGi2kaadsfadaWgaa WcbaGaamOBaaqabaaakeaacqGHciITcqqHuoardaWgaaWcbaGaamOB aaqabaaaaOGaey4kaSIaamyzamaaDaaaleaacaWGRbaabaGaaiikai abeg7aHjaacMcaaaGcdaWcaaqaaiabgkGi2kaadsfadaWgaaWcbaGa amOBaaqabaaakeaacqGHciITcqqHuoardaWgaaWcbaGaeqySdegabe aaaaGccaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamyzamaa DaaaleaacaWGRbaabaGaaiikaiabek7aIjaacMcaaaGcdaWcaaqaai abgkGi2kaadsfadaWgaaWcbaGaeqySdegabeaaaOqaaiabgkGi2kab fs5aenaaBaaaleaacqaHYoGyaeqaaaaakiaadwgadaqhaaWcbaGaam yAaaqaaiaacIcacqaHXoqycaGGPaaaaOGaey4kaSIaamOBamaaBaaa leaacaWGRbaabeaakmaalaaabaGaeyOaIyRaamivamaaBaaaleaacq aHXoqyaeqaaaGcbaGaeyOaIyRaeuiLdq0aaSbaaSqaaiaad6gaaeqa aaaakiaadwgadaqhaaWcbaGaamyAaaqaaiaacIcacqaHXoqycaGGPa aaaOGaaiykaaGaayjkaiaawMcaamaadmaabaGaamOtamaaCaaaleqa baGaamyyaiabgUcaRaaakiabgkHiTiaad6eadaahaaWcbeqaaiaadg gacqGHsislaaaakiaawUfacaGLDbaaaSqaaiabfo5ahbqab0Gaey4k IipakiaaykW7aeaacaWGsbWaa0baaSqaaiaadMgaaeaacaWGHbaaaO Gaeyypa0Zaa8quaeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqa aOWaamWaaeaacqaH1oqzdaWgaaWcbaGaam4AaiaadYgaaeqaaOGaai ikaiaadEhadaqhaaWcbaGaamyAaaqaaiaadkgaaaGccaGGPaaacaGL BbGaayzxaaWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaWGHb aaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaGccaWG KbGaamOvaaWcbaGaamOuaaqab0Gaey4kIipakiaaykW7cqGHRaWkda WdrbqaaiaacIcacaWGubWaaSbaaSqaaiaad6gaaeqaaOGaamOBamaa BaaaleaacaWGPbaabeaakiabgUcaRiaadsfadaWgaaWcbaGaeqySde gabeaakiaadwgadaqhaaWcbaGaamyAaaqaaiaacIcacqaHXoqycaGG PaaaaOGaaiykamaadmaabaGaamOtamaaCaaaleqabaGaamyyaiabgU caRaaakiabgkHiTiaad6eadaahaaWcbeqaaiaadggacqGHsislaaaa kiaawUfacaGLDbaacaWGKbGaamyqaaWcbaGaeu4KdCeabeqdcqGHRi I8aOGaaGPaVdaaaa@F706@

The additional contributions to K aibk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaam4saOWaaSbaaKqaafaacaWGHb GaamyAaiaadkgacaWGRbaabeaaaaa@3619@  and R i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaamOuaOWaa0baaKqaafaacaWGPb aabaGaamyyaaaaaaa@344A@  from the interface can be added by meshing the interface with planar ‘cohesive zone’ elements.   To begin, the solids adjacent to the element are meshed in the usual way with standard continuum elements, but the meshes are designed so that (i) the same element geometry and interpolation scheme is used in both solids, and (ii) the two solids have coincident nodes on the interface.    The interface can then be meshed with planar triangular or quadrilateral elements (in 3D) or linear or quadratic line elements (in 2D).   The order of interpolation should be consistent with the solid elements adjacent to the interface.   Representative interface elements (with the nodes attached to the two solids shown separated for clarity) are shown in the figure below.

 


The displacement field is then interpolated within each element using the shape functions listed in the tables below, as follows.   The nodes on the interface element are numbered so that those on S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@  have the lowest node numbers.  For example, for a linear line element, nodes 1 and 2 lie on S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@ , while nodes 3 and 4 are the nodes on S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@  that are coincident with nodes 1 and 2, respectively.   For a linear quadrilateral element, nodes 1-4 lie on S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaeyOeI0caaa aa@32D2@ , and nodes 5-8 lie on S + MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaCaaaleqabaGaey4kaScaaa aa@32C7@ , with node 5 coincident with node 1 in the undeformed solid, and so on.

 

 

 

Interpolation functions for 2D cohesive zones

(numbers in parentheses show coincident nodes)

 

N 1 (ξ)=0.5(1ξ) N 2 (ξ)=0.5(1+ξ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGobWaaWbaaSqabeaacaaIXa aaaOGaaiikaiabe67a4jaacMcacqGH9aqpcaaIWaGaaiOlaiaaiwda caGGOaGaaGymaiabgkHiTiabe67a4jaacMcaaeaacaWGobWaaWbaaS qabeaacaaIYaaaaOGaaiikaiabe67a4jaacMcacqGH9aqpcaaIWaGa aiOlaiaaiwdacaGGOaGaaGymaiabgUcaRiabe67a4jaacMcaaaaa@4A89@


 

N 1 (ξ)=0.5ξ(1ξ) N 2 (ξ)=0.5ξ(1+ξ) N 3 (ξ)=(1ξ)(1+ξ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGobWaaWbaaSqabeaacaaIXa aaaOGaaiikaiabe67a4jaacMcacqGH9aqpcqGHsislcaaIWaGaaiOl aiaaiwdacqaH+oaEcaGGOaGaaGymaiabgkHiTiabe67a4jaacMcaae aacaWGobWaaWbaaSqabeaacaaIYaaaaOGaaiikaiabe67a4jaacMca cqGH9aqpcaaIWaGaaiOlaiaaiwdacqaH+oaEcaGGOaGaaGymaiabgU caRiabe67a4jaacMcaaeaacaWGobWaaWbaaSqabeaacaaIZaaaaOGa aiikaiabe67a4jaacMcacqGH9aqpcaGGOaGaaGymaiabgkHiTiabe6 7a4jaacMcacaGGOaGaaGymaiabgUcaRiabe67a4jaacMcaaaaa@5E63@


 

 

 

 

 

Interpolation functions for 3D cohesive zones

(numbers in parentheses show coincident nodes)

 

N 1 = ξ 1 N 2 = ξ 2 N 3 =1 ξ 1 ξ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGobWaaWbaaSqabeaacaaIXa aaaOGaeyypa0JaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaad6eadaahaaWcbe qaaiaaikdaaaGccqGH9aqpcqaH+oaEdaWgaaWcbaGaaGOmaaqabaaa keaacaWGobWaaWbaaSqabeaacaaIZaaaaOGaeyypa0JaaGymaiabgk HiTiabe67a4naaBaaaleaacaaIXaaabeaakiabgkHiTiabe67a4naa BaaaleaacaaIYaaabeaaaaaa@5175@


N 1 = 2 ξ 1 1 ξ 1 N 2 = 2 ξ 2 1 ξ 2 N 3 = 2(1 ξ 1 ξ 2 )1 (1 ξ 1 ξ 2 ) N 4 =4 ξ 1 ξ 2 N 5 =4 ξ 2 (1 ξ 1 ξ 2 ) N 6 =4 ξ 1 (1 ξ 1 ξ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGobWaaWbaaSqabeaacaaIXa aaaOGaeyypa0ZaaeWaaeaacaaIYaGaeqOVdG3aaSbaaSqaaiaaigda aeqaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabe67a4naaBaaale aacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOt amaaCaaaleqabaGaaGOmaaaakiabg2da9maabmaabaGaaGOmaiabe6 7a4naaBaaaleaacaaIYaaabeaakiabgkHiTiaaigdaaiaawIcacaGL PaaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaaakeaacaWGobWaaWbaaS qabeaacaaIZaaaaOGaeyypa0ZaaeWaaeaacaaIYaGaaiikaiaaigda cqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+o aEdaWgaaWcbaGaaGOmaaqabaGccaGGPaGaeyOeI0IaaGymaaGaayjk aiaawMcaaiaacIcacaaIXaGaeyOeI0IaeqOVdG3aaSbaaSqaaiaaig daaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaaiyk aaqaaiaad6eadaahaaWcbeqaaiaaisdaaaGccqGH9aqpcaaI0aGaeq OVdG3aaSbaaSqaaiaaigdaaeqaaOGaeqOVdG3aaSbaaSqaaiaaikda aeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOtam aaCaaaleqabaGaaGynaaaakiabg2da9iaaisdacqaH+oaEdaWgaaWc baGaaGOmaaqabaGccaGGOaGaaGymaiabgkHiTiabe67a4naaBaaale aacaaIXaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaIYaaabeaa kiaacMcaaeaacaWGobWaaWbaaSqabeaacaaI2aaaaOGaeyypa0JaaG inaiabe67a4naaBaaaleaacaaIXaaabeaakiaacIcacaaIXaGaeyOe I0IaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOVdG3aaS baaSqaaiaaikdaaeqaaOGaaiykaaaaaa@9BB4@


N 1 =0.25(1 ξ 1 )(1 ξ 2 ) N 2 =0.25(1+ ξ 1 )(1 ξ 2 ) N 3 =0.25(1+ ξ 1 )(1+ ξ 2 ) N 4 =0.25(1 ξ 1 )(1+ ξ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGobWaaWbaaSqabeaacaaIXa aaaOGaeyypa0JaaGimaiaac6cacaaIYaGaaGynaiaacIcacaaIXaGa eyOeI0IaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacIcaca aIXaGaeyOeI0IaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaaiykaaqa aiaad6eadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaaIWaGaaiOlai aaikdacaaI1aGaaiikaiaaigdacqGHRaWkcqaH+oaEdaWgaaWcbaGa aGymaaqabaGccaGGPaGaaiikaiaaigdacqGHsislcqaH+oaEdaWgaa WcbaGaaGOmaaqabaGccaGGPaaabaGaamOtamaaCaaaleqabaGaaG4m aaaakiabg2da9iaaicdacaGGUaGaaGOmaiaaiwdacaGGOaGaaGymai abgUcaRiabe67a4naaBaaaleaacaaIXaaabeaakiaacMcacaGGOaGa aGymaiabgUcaRiabe67a4naaBaaaleaacaaIYaaabeaakiaacMcaae aacaWGobWaaWbaaSqabeaacaaI0aaaaOGaeyypa0JaaGimaiaac6ca caaIYaGaaGynaiaacIcacaaIXaGaeyOeI0IaeqOVdG3aaSbaaSqaai aaigdaaeqaaOGaaiykaiaacIcacaaIXaGaey4kaSIaeqOVdG3aaSba aSqaaiaaikdaaeqaaOGaaiykaaaaaa@7537@


N 1 =(1 ξ 1 )(1 ξ 2 )(1+ ξ 1 + ξ 2 )/4 N 2 =(1+ ξ 1 )(1 ξ 2 )( ξ 1 ξ 2 1)/4 N 3 =(1+ ξ 1 )(1+ ξ 2 )( ξ 1 + ξ 2 1)/4 N 4 =(1 ξ 1 )(1+ ξ 2 )( ξ 2 ξ 1 1)/4 N 5 =(1 ξ 1 2 )(1 ξ 2 )/2 N 6 =(1+ ξ 1 )(1 ξ 2 2 )/2 N 7 =(1 ξ 1 2 )(1+ ξ 2 )/2 N 8 =(1 ξ 1 )(1 ξ 2 2 )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGobWaaWbaaSqabeaacaaIXa aaaOGaeyypa0JaeyOeI0IaaiikaiaaigdacqGHsislcqaH+oaEdaWg aaWcbaGaaGymaaqabaGccaGGPaGaaiikaiaaigdacqGHsislcqaH+o aEdaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiikaiaaigdacqGHRaWk cqaH+oaEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH+oaEdaWgaa WcbaGaaGOmaaqabaGccaGGPaGaai4laiaaisdaaeaacaWGobWaaWba aSqabeaacaaIYaaaaOGaeyypa0JaaiikaiaaigdacqGHRaWkcqaH+o aEdaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiikaiaaigdacqGHsisl cqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiikaiabe67a4n aaBaaaleaacaaIXaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaI YaaabeaakiabgkHiTiaaigdacaGGPaGaai4laiaaisdaaeaacaWGob WaaWbaaSqabeaacaaIZaaaaOGaeyypa0JaaiikaiaaigdacqGHRaWk cqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiikaiaaigdacq GHRaWkcqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiikaiab e67a4naaBaaaleaacaaIXaaabeaakiabgUcaRiabe67a4naaBaaale aacaaIYaaabeaakiabgkHiTiaaigdacaGGPaGaai4laiaaisdaaeaa caWGobWaaWbaaSqabeaacaaI0aaaaOGaeyypa0Jaaiikaiaaigdacq GHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiikaiaa igdacqGHRaWkcqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaGGPaGaai ikaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabe67a4naa BaaaleaacaaIXaaabeaakiabgkHiTiaaigdacaGGPaGaai4laiaais daaeaacaWGobWaaWbaaSqabeaacaaI1aaaaOGaeyypa0Jaaiikaiaa igdacqGHsislcqaH+oaEdaqhaaWcbaGaaGymaaqaaiaaikdaaaGcca GGPaGaaiikaiaaigdacqGHsislcqaH+oaEdaWgaaWcbaGaaGOmaaqa baGccaGGPaGaai4laiaaikdacaaMc8UaaGPaVlaaykW7caaMc8Uaam OtamaaCaaaleqabaGaaGOnaaaakiabg2da9iaacIcacaaIXaGaey4k aSIaeqOVdG3aa0baaSqaaiaaigdaaeaaaaGccaGGPaGaaiikaiaaig dacqGHsislcqaH+oaEdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaGG PaGaai4laiaaikdaaeaacaWGobWaaWbaaSqabeaacaaI3aaaaOGaey ypa0JaaiikaiaaigdacqGHsislcqaH+oaEdaqhaaWcbaGaaGymaaqa aiaaikdaaaGccaGGPaGaaiikaiaaigdacqGHRaWkcqaH+oaEdaWgaa WcbaGaaGOmaaqabaGccaGGPaGaai4laiaaikdacaaMc8UaaGPaVlaa ykW7caaMc8UaamOtamaaCaaaleqabaGaaGioaaaakiabg2da9iaacI cacaaIXaGaeyOeI0IaeqOVdG3aa0baaSqaaiaaigdaaeaaaaGccaGG PaGaaiikaiaaigdacqGHsislcqaH+oaEdaqhaaWcbaGaaGOmaaqaai aaikdaaaGccaGGPaGaai4laiaaikdaaaaa@E36B@


 

 

 

Taking an 8 noded linear cohesive zone element between two 8 noded hexahedral elements as a representative example, we then perform the following calculations for each integration point in the element:

 

1. Assemble the vector of nodal coordinates x= x 1 (1) , x 2 (1) , x 3 (1) , x 1 (1) x 1 (4) , x 2 (4) , x 3 (4) T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEaiabg2da9maadmaabaGaamiEam aaDaaaleaacaaIXaaabaGaaiikaiaaigdacaGGPaaaaOGaaiilaiaa dIhadaqhaaWcbaGaaGOmaaqaaiaacIcacaaIXaGaaiykaaaakiaacY cacaWG4bWaa0baaSqaaiaaiodaaeaacaGGOaGaaGymaiaacMcaaaGc caGGSaGaamiEamaaDaaaleaacaaIXaaabaGaaiikaiaaigdacaGGPa aaaOGaeS47IWKaamiEamaaDaaaleaacaaIXaaabaGaaiikaiaaisda caGGPaaaaOGaaiilaiaadIhadaqhaaWcbaGaaGOmaaqaaiaacIcaca aI0aGaaiykaaaakiaacYcacaWG4bWaa0baaSqaaiaaiodaaeaacaGG OaGaaGinaiaacMcaaaaakiaawUfacaGLDbaadaahaaWcbeqaaiaads faaaaaaa@5761@  and the 2D matrix of shape function derivatives

dN dξ = N 1 ξ 1 N 2 ξ 1 N 3 ξ 1 N 4 ξ 1 N 1 ξ 2 N 2 ξ 2 N 3 ξ 2 N 4 ξ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCOtaaqaaiaads gacaWH+oaaaiabg2da9maadmaabaqbaeqabiabaaaabaWaaSaaaeaa cqGHciITcaWGobWaaWbaaSqabeaacaaIXaaaaaGcbaGaeyOaIyRaeq OVdG3aaSbaaSqaaiaaigdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRa amOtamaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kabe67a4naaBa aaleaacaaIXaaabeaaaaaakeaadaWcaaqaaiabgkGi2kaad6eadaah aaWcbeqaaiaaiodaaaaakeaacqGHciITcqaH+oaEdaWgaaWcbaGaaG ymaaqabaaaaaGcbaWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaa caaI0aaaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiaaigdaaeqaaa aaaOqaamaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGaaGymaaaa aOqaaiabgkGi2kabe67a4naaBaaaleaacaaIYaaabeaaaaaakeaada WcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaaikdaaaaakeaacqGH ciITcqaH+oaEdaWgaaWcbaGaaGOmaaqabaaaaaGcbaWaaSaaaeaacq GHciITcaWGobWaaWbaaSqabeaacaaIZaaaaaGcbaGaeyOaIyRaeqOV dG3aaSbaaSqaaiaaikdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaam OtamaaCaaaleqabaGaaGinaaaaaOqaaiabgkGi2kabe67a4naaBaaa leaacaaIYaaabeaaaaaaaaGccaGLBbGaayzxaaaaaa@72A9@

where N a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOtamaaCaaaleqabaGaamyyaaaaaa a@32C6@  with a=1…4 are the interpolation functions for the 4 noded quadrilateral elements listed in Table 8.3 and hence calculate

dx dξ = dx d ξ 1 dx d ξ 2 = dN dξ xJ= dx d ξ 1 × dx d ξ 2 n= 1 J dx d ξ 1 × dx d ξ 2 e 1 = 1 dx/d ξ 1 dx d ξ 1 e 2 =n× e 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgacaWH4baaba Gaamizaiaah67aaaGaeyypa0ZaamWaaeaafaqabeGabaaabaWaaSaa aeaacaWGKbGaaCiEaaqaaiaadsgacqaH+oaEdaWgaaWcbaGaaGymaa qabaaaaaGcbaWaaSaaaeaacaWGKbGaaCiEaaqaaiaadsgacqaH+oaE daWgaaWcbaGaaGOmaaqabaaaaaaaaOGaay5waiaaw2faaiabg2da9m aalaaabaGaamizaiaah6eaaeaacaWGKbGaaCOVdaaacaWH4bGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOsaiabg2da9maaemaa baWaaSaaaeaacaWGKbGaaCiEaaqaaiaadsgacqaH+oaEdaWgaaWcba GaaGymaaqabaaaaOGaey41aq7aaSaaaeaacaWGKbGaaCiEaaqaaiaa dsgacqaH+oaEdaWgaaWcbaGaaGOmaaqabaaaaaGccaGLhWUaayjcSd aabaGaaCOBaiabg2da9maalaaabaGaaGymaaqaaiaadQeaaaWaaSaa aeaacaWGKbGaaCiEaaqaaiaadsgacqaH+oaEdaWgaaWcbaGaaGymaa qabaaaaOGaey41aq7aaSaaaeaacaWGKbGaaCiEaaqaaiaadsgacqaH +oaEdaWgaaWcbaGaaGOmaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyzamaaBa aaleaacaaIXaaabeaakiabg2da9maalaaabaGaaGymaaqaamaaemaa baGaamizaiaahIhacaGGVaGaamizaiabe67a4naaBaaaleaacaaIXa aabeaaaOGaay5bSlaawIa7aaaadaWcaaqaaiaadsgacaWH4baabaGa amizaiabe67a4naaBaaaleaacaaIXaaabeaaaaGccaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aCyzamaaBaaaleaacaaIYaaabeaakiabg2da9iaah6gacqGHxdaTca WHLbWaaSbaaSqaaiaaigdaaeqaaaaaaa@E055@

 

2. Assemble a matrix B that maps displacement components in the {i,j,k} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahMgacaGGSaGaaCOAaiaacY cacaWHRbGaaiyFaaaa@3719@  directions to the normal and tangential displacement jump at an arbitrary point in the element by defining (for a 3D element)

Δ n , Δ 1 , Δ 2 T =B u 1 1 u 2 1 u 3 1 u 1 2 T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqqHuoardaWgaaWcbaGaam OBaaqabaGccaGGSaGaeuiLdq0aaSbaaSqaaiaaigdaaeqaaOGaaiil aiabfs5aenaaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2faamaaCa aaleqabaGaamivaaaakiabg2da9iaahkeadaWadaqaauaabeqabuaa aaqaaiaadwhadaqhaaWcbaGaaGymaaqaaiaaigdaaaaakeaacaWG1b Waa0baaSqaaiaaikdaaeaacaaIXaaaaaGcbaGaamyDamaaDaaaleaa caaIZaaabaGaaGymaaaaaOqaaiaadwhadaqhaaWcbaGaaGymaaqaai aaikdaaaaakeaacqWIVlctaaaacaGLBbGaayzxaaWaaWbaaSqabeaa caWGubaaaaaa@4DEA@

For a linear 8 noded quadrilateral cohesive zone element the B matrix is

 


where ( n i , e i (α) ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaad6gadaWgaaWcbaGaamyAaa qabaGccaGGSaGaamyzamaaDaaaleaacaWGPbaabaGaaiikaiabeg7a HjaacMcaaaGccaGGPaaaaa@3A07@  are the components of (n, e α ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaah6gacaGGSaGaaCyzamaaBa aaleaacqaHXoqyaeqaaOGaaiykaaaa@36A3@ .  Similar matrices can be constructed for other elements using the definition.

 

3. Calculate the displacement jumps Δ n , Δ 1 , Δ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqqHuoardaWgaaWcbaGaam OBaaqabaGccaGGSaGaeuiLdq0aaSbaaSqaaiaaigdaaeqaaOGaaiil aiabfs5aenaaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2faaaaa@3B70@ , determine the time derivative of the displacement jumps by dividing the increment in displacement by the time increment, and hence use the traction-separation law to assemble the traction vector T= T n , T 1 , T 2 T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9maadmaabaGaamivam aaBaaaleaacaWGUbaabeaakiaacYcacaWGubWaaSbaaSqaaiaaigda aeqaaOGaaiilaiaadsfadaWgaaWcbaGaaGOmaaqabaaakiaawUfaca GLDbaadaahaaWcbeqaaiaadsfaaaaaaa@3CB2@ .

 

4. Assemble a tangent matrix D that quantifies the stiffness of the interface.  For a 3D interface

D= T n Δ n T n Δ 1 T n Δ 2 T 1 Δ n T 1 Δ 1 T 1 Δ 2 T 2 Δ n T 2 Δ 1 T 2 Δ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiraiabg2da9maadmaabaqbaeqabm WaaaqaamaalaaabaGaeyOaIyRaamivamaaBaaaleaacaWGUbaabeaa aOqaaiabgkGi2kabfs5aenaaBaaaleaacaWGUbaabeaaaaaakeaada WcaaqaaiabgkGi2kaadsfadaWgaaWcbaGaamOBaaqabaaakeaacqGH ciITcqqHuoardaWgaaWcbaGaaGymaaqabaaaaaGcbaWaaSaaaeaacq GHciITcaWGubWaaSbaaSqaaiaad6gaaeqaaaGcbaGaeyOaIyRaeuiL dq0aaSbaaSqaaiaaikdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaam ivamaaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kabfs5aenaaBaaa leaacaWGUbaabeaaaaaakeaadaWcaaqaaiabgkGi2kaadsfadaWgaa WcbaGaaGymaaqabaaakeaacqGHciITcqqHuoardaWgaaWcbaGaaGym aaqabaaaaaGcbaWaaSaaaeaacqGHciITcaWGubWaaSbaaSqaaiaaig daaeqaaaGcbaGaeyOaIyRaeuiLdq0aaSbaaSqaaiaaikdaaeqaaaaa aOqaamaalaaabaGaeyOaIyRaamivamaaBaaaleaacaaIYaaabeaaaO qaaiabgkGi2kabfs5aenaaBaaaleaacaWGUbaabeaaaaaakeaadaWc aaqaaiabgkGi2kaadsfadaWgaaWcbaGaaGOmaaqabaaakeaacqGHci ITcqqHuoardaWgaaWcbaGaaGymaaqabaaaaaGcbaWaaSaaaeaacqGH ciITcaWGubWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaeuiLdq 0aaSbaaSqaaiaaikdaaeqaaaaaaaaakiaawUfacaGLDbaaaaa@74F7@

The derivatives in this matrix are

T n Δ n = σ max δ n 1 Δ n δ n exp 1 Δ n δ n exp Δ t 2 δ n 2 + η Δt T n Δ α = T α Δ n =2 σ max δ n Δ n Δ α δ n 2 exp 1 Δ n δ n exp Δ t 2 δ n 2 T α Δ β =2 σ max δ n δ αβ 2 Δ α Δ β δ n 2 1+ Δ n δ n exp 1 Δ n δ n exp Δ t 2 δ n 2 + η Δt δ αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaadsfada WgaaWcbaGaamOBaaqabaaakeaacqGHciITcqqHuoardaWgaaWcbaGa amOBaaqabaaaaOGaeyypa0ZaaSaaaeaacqaHdpWCdaWgaaWcbaGaci yBaiaacggacaGG4baabeaaaOqaaiabes7aKnaaBaaaleaacaWGUbaa beaaaaGcdaqadaqaaiaaigdacqGHsisldaWcaaqaaiabfs5aenaaBa aaleaacaWGUbaabeaaaOqaaiabes7aKnaaBaaaleaacaWGUbaabeaa aaaakiaawIcacaGLPaaaciGGLbGaaiiEaiaacchadaqadaqaaiaaig dacqGHsisldaWcaaqaaiabfs5aenaaBaaaleaacaWGUbaabeaaaOqa aiabes7aKnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaaci GGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGaeuiLdq0a a0baaSqaaiaadshaaeaacaaIYaaaaaGcbaGaeqiTdq2aa0baaSqaai aad6gaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgUcaRmaalaaa baGaeq4TdGgabaGaeuiLdqKaamiDaaaaaeaadaWcaaqaaiabgkGi2k aadsfadaWgaaWcbaGaamOBaaqabaaakeaacqGHciITcqqHuoardaWg aaWcbaGaeqySdegabeaaaaGccqGH9aqpdaWcaaqaaiabgkGi2kaads fadaWgaaWcbaGaeqySdegabeaaaOqaaiabgkGi2kabfs5aenaaBaaa leaacaWGUbaabeaaaaGccqGH9aqpcqGHsislcaaIYaWaaSaaaeaacq aHdpWCdaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaOqaaiabes7a KnaaBaaaleaacaWGUbaabeaaaaGcdaWcaaqaaiabfs5aenaaBaaale aacaWGUbaabeaakiabfs5aenaaBaaaleaacqaHXoqyaeqaaaGcbaGa eqiTdq2aa0baaSqaaiaad6gaaeaacaaIYaaaaaaakiGacwgacaGG4b GaaiiCamaabmaabaGaaGymaiabgkHiTmaalaaabaGaeuiLdq0aaSba aSqaaiaad6gaaeqaaaGcbaGaeqiTdq2aaSbaaSqaaiaad6gaaeqaaa aaaOGaayjkaiaawMcaaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOe I0YaaSaaaeaacqqHuoardaqhaaWcbaGaamiDaaqaaiaaikdaaaaake aacqaH0oazdaqhaaWcbaGaamOBaaqaaiaaikdaaaaaaaGccaGLOaGa ayzkaaaabaWaaSaaaeaacqGHciITcaWGubWaaSbaaSqaaiabeg7aHb qabaaakeaacqGHciITcqqHuoardaWgaaWcbaGaeqOSdigabeaaaaGc cqGH9aqpcaaIYaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaciyBaiaacg gacaGG4baabeaaaOqaaiabes7aKnaaBaaaleaacaWGUbaabeaaaaGc daqadaqaaiabes7aKnaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaey OeI0IaaGOmamaalaaabaGaeuiLdq0aaSbaaSqaaiabeg7aHbqabaGc cqqHuoardaWgaaWcbaGaeqOSdigabeaaaOqaaiabes7aKnaaDaaale aacaWGUbaabaGaaGOmaaaaaaaakiaawIcacaGLPaaadaqadaqaaiaa igdacqGHRaWkdaWcaaqaaiabfs5aenaaBaaaleaacaWGUbaabeaaaO qaaiabes7aKnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaa ciGGLbGaaiiEaiaacchadaqadaqaaiaaigdacqGHsisldaWcaaqaai abfs5aenaaBaaaleaacaWGUbaabeaaaOqaaiabes7aKnaaBaaaleaa caWGUbaabeaaaaaakiaawIcacaGLPaaaciGGLbGaaiiEaiaacchada qadaqaaiabgkHiTmaalaaabaGaeuiLdq0aa0baaSqaaiaadshaaeaa caaIYaaaaaGcbaGaeqiTdq2aa0baaSqaaiaad6gaaeaacaaIYaaaaa aaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaeq4TdGgabaGaeuiL dqKaamiDaaaacqaH0oazdaWgaaWcbaGaeqySdeMaeqOSdigabeaaaa aa@F1F2@

 

 

The element stiffness and internal force vector for the cohesive zone element can then be calculated as

k el = i B T ( ξ i )D( ξ i )B( ξ i )J( ξ i ) w i r el = i B T ( ξ i )T( ξ i )J( ξ i ) w i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4AamaaBaaaleaacaWGLbGaamiBaa qabaGccqGH9aqpdaaeqbqaaiaahkeadaahaaWcbeqaaiaadsfaaaGc caGGOaGaaCOVdmaaBaaaleaacaWGPbaabeaakiaacMcacaWHebGaai ikaiaah67adaWgaaWcbaGaamyAaaqabaGccaGGPaGaaCOqaiaacIca caWH+oWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiaadQeacaGGOaGaaC OVdmaaBaaaleaacaWGPbaabeaakiaacMcacaWG3bWaaSbaaSqaaiaa dMgaaeqaaaqaaiaadMgaaeqaniabggHiLdGccaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaahkhadaWgaaWcbaGaamyzaiaadYgaae qaaOGaeyypa0ZaaabuaeaacaWHcbWaaWbaaSqabeaacaWGubaaaOGa aiikaiaah67adaWgaaWcbaGaamyAaaqabaGccaGGPaGaaCivaiaacI cacaWH+oWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiaadQeacaGGOaGa aCOVdmaaBaaaleaacaWGPbaabeaakiaacMcacaWG3bWaaSbaaSqaai aadMgaaeqaaaqaaiaadMgaaeqaniabggHiLdaaaa@7B13@

where ξ i , w i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOVdmaaBaaaleaacaWGPbaabeaaki aacYcacaWG3bWaaSbaaSqaaiaadMgaaeqaaaaa@3614@  are the integration points and weights for a 2x2 point Gaussian quadrature scheme (see Section 8.1.12).


 

 

Example: A simple example of the use of a cohesive zone element to predict interface separation is shown in the figure. Two solid cubes with side length L (meshed with a single element) are bonded by a cohesive interface.  Both cubes have the same Young’s modulus E.  The interface has strength σ max MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiGac2gacaGGHb GaaiiEaaqabaaaaa@35A3@ , separation δ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdq2aaSbaaSqaaiaad6gaaeqaaa aa@33A4@  at peak stress; and viscosity η MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdGgaaa@328C@ .  The bottom cube is prevented from displacing vertically, and the top face of the upper cube is displaced vertically by distance u(t) at constant rate V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaaIWaaabeaaaa a@32A1@ .  The cubes are in a state of uniaxial vertical stress with magnitude σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdmhaaa@32A3@ .   The graph shows the stress in the cubes as a function of the imposed displacement.   For comparison, the exact solution for a rate independent interface can be expressed in parametric form as

σ σ max = δ δ n exp 1 δ δ n Eu 2L σ max = δ δ n E δ n L σ max +exp 1 δ δ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqaHdpWCaeaacqaHdpWCda WgaaWcbaGaciyBaiaacggacaGG4baabeaaaaGccqGH9aqpdaWcaaqa aiabes7aKbqaaiabes7aKnaaBaaaleaacaWGUbaabeaaaaGcciGGLb GaaiiEaiaacchadaqadaqaaiaaigdacqGHsisldaWcaaqaaiabes7a Kbqaaiabes7aKnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPa aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8+aaSaaaeaacaWGfbGaamyDaaqaaiaaikda caWGmbGaeq4Wdm3aaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaO Gaeyypa0ZaaSaaaeaacqaH0oazaeaacqaH0oazdaWgaaWcbaGaamOB aaqabaaaaOWaaiWaaeaadaWcaaqaaiaadweacqaH0oazdaWgaaWcba GaamOBaaqabaaakeaacaWGmbGaeq4Wdm3aaSbaaSqaaiGac2gacaGG HbGaaiiEaaqabaaaaOGaey4kaSIaciyzaiaacIhacaGGWbWaaeWaae aacaaIXaGaeyOeI0YaaSaaaeaacqaH0oazaeaacqaH0oazdaWgaaWc baGaamOBaaqabaaaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaaaaaa@8988@

The result is plotted as a dashed curve in the figure.   Results are shown for E δ n /(2L σ max )=0.1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiabes7aKnaaBaaaleaacaWGUb aabeaakiaac+cacaGGOaGaaGOmaiaadYeacqaHdpWCdaWgaaWcbaGa ciyBaiaacggacaGG4baabeaakiaacMcacqGH9aqpcaaIWaGaaiOlai aaigdaaaa@400B@  and η V 0 / σ max =0.0025 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdGMaamOvamaaBaaaleaacaaIWa aabeaakiaac+cacqaHdpWCdaWgaaWcbaGaciyBaiaacggacaGG4baa beaakiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIYaGaaGynaa aa@3F38@ .  The interface experiences a ‘snap back’ instability, in which the stress-displacement relation for the rate-independent interface has a portion with negative slope.   Since a monotonically increasing displacement is prescribed on the upper solid in the finite element simulation, the interface experiences a rapid separation (at a rate determined by the viscosity of the interface) and the stress drops rapidly from a value close to its peak to close to zero.   If the simulation is attempted with η=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdGMaeyypa0JaaGimaaaa@344C@ , the Newton-Raphson equilibrium iterations fail to converge at the point where the instability occurs, and the simulation terminates.

 

A code that runs the test in this example is provided in the file FEM_Cohesive_Zones.m (along with input files CohesiveZone_example.txt and CohesiveZone_Example_2D) at

https://github.com/albower/Applied_Mechanics_of_Solids/

 

 

 

8.8.3 Modeling Contact

 

We end this chapter with a brief description how contact between two deformable solids can be treated in a finite element simulation.   To keep things simple we consider only two-dimensional, static, ‘hard’ frictionless contact, but we will account for large changes in the geometry of the contacting solids.

 

Contact geometry:  The figure shows the problem to be solved.  We anticipate that two finite element meshes may come into contact during an analysis (or the mesh may contact itself).   Wherever contact does occur, we must prevent the meshes from overlapping.   We therefore need a way to calculate the gap between the two surfaces.

 

To do this, we designate one of the contacting surfaces as the ‘master,’ and the other as ‘slave.’   The choice is arbitrary, but it can be helpful to select the stiffer of the two surfaces as the ‘master.’   We then fit a curve through the nodes on the master surface in some way: this curve is used to define the boundary of the solid.  Here, we will connect the nodes with straight-line segments, but quadratic or higher order polynomials are often used as well.  The contact algorithm must prevent the nodes on the ‘slave’ surface from penetrating within the ‘master’ curve.

 

A representative slave node (given the number 1) and master segment (connecting nodes 2 and 3) is shown in the figure. The nodes have positions (after deformation) y a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaaCyEaOWaaWbaaKqaafqabaGaam yyaaaaaaa@3387@ , a=1..3.   For subsequent calculations it is helpful to define a set of interpolation functions that will be used to calculate the gap between the node 1 and the master segment:

N 1 =1 N 2 =(1ξ)/2 N 3 =(1+ξ)/21<ξ<1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGobWaaWbaaSqabeaacaaIXa aaaOGaeyypa0JaeyOeI0IaaGymaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamOtamaaCaaaleqabaGaaGOmaaaakiabg2da9iaa cIcacaaIXaGaeyOeI0IaeqOVdGNaaiykaiaac+cacaaIYaaabaGaam OtamaaCaaaleqabaGaaG4maaaakiabg2da9iaacIcacaaIXaGaey4k aSIaeqOVdGNaaiykaiaac+cacaaIYaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0IaaGymaiab gYda8iabe67a4jabgYda8iaaigdaaaaa@70F9@

It is helpful to note that

 

1. a vector from the slave node to a point at normalized coordinate ξ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdGhaaa@32A3@  on the master segment can be calculated as d= N a (ξ) y a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaaCizaiabg2da9iaad6eakmaaCa aajeaqbeqaaiaadggaaaqcaaKaaiikaiabe67a4jaacMcacaWH5bGc daahaaqcbauabeaacaWGHbaaaaaa@3B0E@

 

2. A unit vector tangent to the master surface can be calculated as

t= 1 ( N a /ξ) y a N a ξ y a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDaiabg2da9maalaaabaGaaGymaa qaamaaemaabaGaaiikaiabgkGi2kaad6eadaahaaWcbeqaaiaadgga aaGccaGGVaGaeyOaIyRaeqOVdGNaaiykaiaahMhadaahaaWcbeqaai aadggaaaaakiaawEa7caGLiWoaaaWaaSaaaeaacqGHciITcaWGobWa aWbaaSqabeaacaWGHbaaaaGcbaGaeyOaIyRaeqOVdGhaaiaahMhada ahaaWcbeqaaiaadggaaaaaaa@4A1E@

 

3. A unit vector normal to the master surface follows as n=[ t 2 , t 1 ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaaCOBaiabg2da9iaacUfacqGHsi slcaWG0bGcdaWgaaqcbauaaiaaikdaaeqaaKaaajaacYcacaWG0bGc daWgaaqcbauaaiaaigdaaeqaaKaaajaac2faaaa@3B68@

 

In addition, the calculations described here can be extended to a curved geometry for the master segment by including more master nodes, and interpolating between their positions using higher order polynomials for N a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOtamaaCaaaleqabaGaamyyaaaaaa a@32C6@ .

 

The gap between the slave node and the master segment is then calculated as follows:

1. Determine the point ξ * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdG3aaWbaaSqabeaacaGGQaaaaa aa@337E@  on the master segment that is closest to the slave node from the condition d( ξ * )t=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCizaiaacIcacqaH+oaEdaahaaWcbe qaaiaacQcaaaGccaGGPaGaeyyXICTaaCiDaiabg2da9iaaicdaaaa@3AD5@ .   For a straight line master segment this is a linear equation with solution

ξ * = y 3 y 2 2 y 1 y 2 y 3 / y 3 y 2 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdG3aaWbaaSqabeaacaGGQaaaaO Gaeyypa0ZaaeWaaeaacaWH5bWaaWbaaSqabeaacaaIZaaaaOGaeyOe I0IaaCyEamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgw SixpaabmaabaGaaGOmaiaahMhadaahaaWcbeqaaiaaigdaaaGccqGH sislcaWH5bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaCyEamaaCa aaleqabaGaaG4maaaaaOGaayjkaiaawMcaaiaac+cadaabdaqaaiaa hMhadaahaaWcbeqaaiaaiodaaaGccqGHsislcaWH5bWaaWbaaSqabe aacaaIYaaaaaGccaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaaaa @50CD@

For higher order master segments the equation is nonlinear and must be solved numerically.

 

2. Calculate the gap from Δ n =n N a ( ξ * ) y a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaO Gaeyypa0JaeyOeI0IaaCOBaiabgwSixlaad6eadaahaaWcbeqaaiaa dggaaaGccaGGOaGaeqOVdG3aaWbaaSqabeaacaGGQaaaaOGaaiykai aahMhadaahaaWcbeqaaiaadggaaaaaaa@40A9@ .

 

The finite element solution must then satisfy: (i) Δ n 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaeuiLdqKcdaWgaaqcbauaaiaad6 gaaeqaaKaaajabgwMiZkaaicdaaaa@36C0@  for all slave nodes and (ii) The reaction force between master surface and slave node must be repulsive or zero.   In a static analysis, these conditions are satisfied by iteration, as follows:

 

1.       Start with some guess for the nodes that are in contact;

 

2.       Solve the equilibrium equation while enforcing the condition Δ n =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaeuiLdqKcdaWgaaqcbauaaiaad6 gaaeqaaKaaajabg2da9iaaicdaaaa@3600@  for these nodes

 

3.       Calculate Δ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaeuiLdqKcdaWgaaqcbauaaiaad6 gaaeqaaaaa@33F7@  for slave nodes that were not included in the contact set, and add any with Δ n <0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaeuiLdqKcdaWgaaqcbauaaiaad6 gaaeqaaKaaajabgYda8iaaicdaaaa@35FE@  to the contact set for the next iteration

 

4.       Calculate the reaction force for slave nodes in the contact set and remove any with tensile reactions from the contact set for the next iteration

 

5.       Check that 1< ξ * <1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaKaeyOeI0IaaGymaiabgYda8iabe6 7a4PWaaWbaaKqaafqabaGaaiOkaaaajaaqcqGH8aapcaaIXaaaaa@38C4@  for all slave nodes.   If not, a slave node has slid from one master segment to its neighbor.    Update the connectivity for the master-slave elements for the next iteration.

 

6.       If there was a change in the list of contacting nodes or the master-slave connectivity, return to step 2.

 

 

Constrained virtual work equation: The constraints at slave nodes are satisfied using Lagrange multipliers, as described in Section 8.8.1. Using the hypoelastic solid as a representative example again, the modified virtual work equation takes the form

R σ ij ε kl ( u i a ) N a x j dV+ Δ n (c) u i a λ c R b i N a dV R t i * N a dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOWaamWaaeaacqaH1oqzdaWgaaWcbaGaam4Aaiaa dYgaaeqaaOGaaiikaiaadwhadaqhaaWcbaGaamyAaaqaaiaadggaaa GccaGGPaaacaGLBbGaayzxaaWaaSaaaeaacqGHciITcaWGobWaaWba aSqabeaacaWGHbaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQb aabeaaaaGccaWGKbGaamOvaiabgUcaRmaalaaabaGaeyOaIyRaeuiL dq0aaSbaaSqaaiaad6gaaeqaaOWaaWbaaSqabeaacaGGOaGaam4yai aacMcaaaaakeaacqGHciITcaWG1bWaa0baaSqaaiaadMgaaeaacaWG HbaaaaaakiabeU7aSnaaBaaaleaacaWGJbaabeaakiabgkHiTmaape fabaGaamOyamaaBaaaleaacaWGPbaabeaakiaad6eadaahaaWcbeqa aiaadggaaaGccaWGKbGaamOvaiabgkHiTmaapefabaGaamiDamaaDa aaleaacaWGPbaabaGaaiOkaaaakiaad6eadaahaaWcbeqaaiaadgga aaGccaWGKbGaamyqaaWcbaGaeyOaIyRaamOuaaqab0Gaey4kIipaaS qaaiaadkfaaeqaniabgUIiYdaaleaacaWGsbaabeqdcqGHRiI8aOGa eyypa0JaaGimaiaaykW7caaMc8UaaGPaVdaa@754A@

where a summation on slave nodes c is implied, and

Δ n u i a = N a ( ξ * ) n i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqqHuoardaWgaa WcbaGaamOBaaqabaaakeaacqGHciITcaWG1bWaa0baaSqaaiaadMga aeaacaWGHbaaaaaakiabg2da9iabgkHiTiaad6eadaahaaWcbeqaai aadggaaaGccaGGOaGaeqOVdG3aaWbaaSqabeaacaGGQaaaaOGaaiyk aiaad6gadaWgaaWcbaGaamyAaaqabaaaaa@4341@

As usual the discrete virtual work equation is a set of nonlinear equations for the unknown displacements u i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaaaaa@33DB@  at the nodes.  The additional unknown Lagrange multipliers are found by including the constraint equations Δ n (c) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aa0baaSqaaiaad6gaaeaaca GGOaGaam4yaiaacMcaaaaaaa@35A7@  at the contacting slave nodes in the global system.   The equations must be solved using Newton-Raphson iterations, which means repeatedly solving a set of linear equations

K aibk d w k b + 2 Δ n (c) u i a u k b λ c d w k b + Δ n (c) u i a d ω c + R i a + Δ n (c) u i a λ c F i a =0 Δ n (c) u k b d w k c + Δ n (c) =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGlbWaaSbaaSqaaiaadggaca WGPbGaamOyaiaadUgaaeqaaOGaamizaiaadEhadaqhaaWcbaGaam4A aaqaaiaadkgaaaGccqGHRaWkdaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiabfs5aenaaDaaaleaacaWGUbaabaGaaiikaiaadoga caGGPaaaaaGcbaGaeyOaIyRaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaakiabgkGi2kaadwhadaqhaaWcbaGaam4Aaaqaaiaadkgaaaaa aOGaeq4UdW2aaSbaaSqaaiaadogaaeqaaOGaamizaiaadEhadaqhaa WcbaGaam4AaaqaaiaadkgaaaGccqGHRaWkdaWcaaqaaiabgkGi2kab fs5aenaaDaaaleaacaWGUbaabaGaaiikaiaadogacaGGPaaaaaGcba GaeyOaIyRaamyDamaaDaaaleaacaWGPbaabaGaamyyaaaaaaGccaWG KbGaeqyYdC3aaSbaaSqaaiaadogaaeqaaOGaey4kaSIaamOuamaaDa aaleaacaWGPbaabaGaamyyaaaakiabgUcaRmaalaaabaGaeyOaIyRa euiLdq0aa0baaSqaaiaad6gaaeaacaGGOaGaam4yaiaacMcaaaaake aacqGHciITcaWG1bWaa0baaSqaaiaadMgaaeaacaWGHbaaaaaakiab eU7aSnaaBaaaleaacaWGJbaabeaakiabgkHiTiaadAeadaqhaaWcba GaamyAaaqaaiaadggaaaGccqGH9aqpcaaIWaaabaWaaSaaaeaacqGH ciITcqqHuoardaqhaaWcbaGaamOBaaqaaiaacIcacaWGJbGaaiykaa aaaOqaaiabgkGi2kaadwhadaqhaaWcbaGaam4Aaaqaaiaadkgaaaaa aOGaamizaiaadEhadaqhaaWcbaGaam4AaaqaaiaadogaaaGccqGHRa WkcqqHuoardaqhaaWcbaGaamOBaaqaaiaacIcacaWGJbGaaiykaaaa kiabg2da9iaaicdaaaaa@8E76@

for corrections d w i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhadaqhaaWcbaGaamyAaa qaaiaadggaaaaaaa@34C6@  to the current approximation for the displacement field and corrections d ω k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeM8a3naaBaaaleaacaWGRb aabeaaaaa@34B2@  to the Lagrange multipliers. As usual

K aibk = R σ ij ε kl N a x j N b x l dV R i a = R σ ij ε kl ( w i b ) N a x j dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaakiabg2da9maapefabaWaaSaaaeaacqGHciIT cqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRaeq yTdu2aaSbaaSqaaiaadUgacaWGSbaabeaaaaGcdaWcaaqaaiabgkGi 2kaad6eadaahaaWcbeqaaiaadggaaaaakeaacqGHciITcaWG4bWaaS baaSqaaiaadQgaaeqaaaaakmaalaaabaGaeyOaIyRaamOtamaaCaaa leqabaGaamOyaaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamiBaa qabaaaaOGaamizaiaadAfaaSqaaiaadkfaaeqaniabgUIiYdGccaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaamOuamaaDaaaleaacaWGPbaa baGaamyyaaaakiabg2da9maapefabaGaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakmaadmaabaGaeqyTdu2aaSbaaSqaaiaadUgacaWG SbaabeaakiaacIcacaWG3bWaa0baaSqaaiaadMgaaeaacaWGIbaaaO GaaiykaaGaay5waiaaw2faamaalaaabaGaeyOaIyRaamOtamaaCaaa leqabaGaamyyaaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaa qabaaaaOGaamizaiaadAfaaSqaaiaadkfaaeqaniabgUIiYdGccaaM c8oaaa@871B@

while

2 Δ n (c) u i a u k b p N a N b q 2 t k t i + N a q N b ξ t i n k + N b q N a ξ t k n i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccqqHuoardaqhaaWcbaGaamOBaaqaaiaacIcacaWGJbGa aiykaaaaaOqaaiabgkGi2kaadwhadaqhaaWcbaGaamyAaaqaaiaadg gaaaGccqGHciITcaWG1bWaa0baaSqaaiaadUgaaeaacaWGIbaaaaaa kiabgIKi7kabgkHiTiaadchadaWcaaqaaiaad6eadaahaaWcbeqaai aadggaaaGccaWGobWaaWbaaSqabeaacaWGIbaaaaGcbaGaamyCamaa CaaaleqabaGaaGOmaaaaaaGccaWG0bWaaSbaaSqaaiaadUgaaeqaaO GaamiDamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaamOt amaaCaaaleqabaGaamyyaaaaaOqaaiaadghaaaWaaSaaaeaacqGHci ITcaWGobWaaWbaaSqabeaacaWGIbaaaaGcbaGaeyOaIyRaeqOVdGha aiaadshadaWgaaWcbaGaamyAaaqabaGccaWGUbWaaSbaaSqaaiaadU gaaeqaaOGaey4kaSYaaSaaaeaacaWGobWaaWbaaSqabeaacaWGIbaa aaGcbaGaamyCaaaadaWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaai aadggaaaaakeaacqGHciITcqaH+oaEaaGaamiDamaaBaaaleaacaWG Rbaabeaakiaad6gadaWgaaWcbaGaamyAaaqabaaaaa@6BCD@

with

q= N a ξ y a p=n 2 N a ξ 2 y a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCaiabg2da9maaemaabaWaaSaaae aacqGHciITcaWGobWaaWbaaSqabeaacaWGHbaaaaGcbaGaeyOaIyRa eqOVdGhaaiaahMhadaahaaWcbeqaaiaadggaaaaakiaawEa7caGLiW oacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaadchacqGH9aqpcaWHUbGaeyyXIC9aaS aaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWGobWaaWbaaSqa beaacaWGHbaaaaGcbaGaeyOaIyRaeqOVdG3aaWbaaSqabeaacaaIYa aaaaaakiaahMhadaahaaWcbeqaaiaadggaaaaaaa@5F6B@

For a straight-line master segment p=0.

 

The derivatives of Δ n (c) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aa0baaSqaaiaad6gaaeaaca GGOaGaam4yaiaacMcaaaaaaa@35A7@  in these expressions are derived as follows:

1. Recall that Δ n n= N a y a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaO GaaCOBaiabg2da9iabgkHiTiaad6eadaahaaWcbeqaaiaadggaaaGc caWH5bWaaWbaaSqabeaacaWGHbaaaaaa@3A5E@ .  

 

2. Perturbing this expression shows that

δ Δ n n+ Δ n δn= N a δ y a N a ξ δ ξ * y a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaeuiLdq0aaSbaaSqaaiaad6 gaaeqaaOGaaCOBaiabgUcaRiabfs5aenaaBaaaleaacaWGUbaabeaa kiabes7aKjaah6gacqGH9aqpcqGHsislcaWGobWaaWbaaSqabeaaca WGHbaaaOGaeqiTdqMaaCyEamaaCaaaleqabaGaamyyaaaakiabgkHi TmaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGaamyyaaaaaOqaai abgkGi2kabe67a4baacqaH0oazcqaH+oaEdaahaaWcbeqaaiaacQca aaGccaWH5bWaaWbaaSqabeaacaWGHbaaaaaa@519D@

 

3. The second term on both the left and right hand sides of this expression must be parallel to the tangent vector t.  If we dot both sides with n, therefore, δ Δ n = N a nδ y a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaeuiLdq0aaSbaaSqaaiaad6 gaaeqaaOGaeyypa0JaeyOeI0IaamOtamaaCaaaleqabaGaamyyaaaa kiaah6gacqGHflY1cqaH0oazcaWH5bWaaWbaaSqabeaacaWGHbaaaa aa@3FF2@ . This shows that

Δ n u i a = N a ( ξ * ) n i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqqHuoardaWgaa WcbaGaamOBaaqabaaakeaacqGHciITcaWG1bWaa0baaSqaaiaadMga aeaacaWGHbaaaaaakiabg2da9iabgkHiTiaad6eadaahaaWcbeqaai aadggaaaGccaGGOaGaeqOVdG3aaWbaaSqabeaacaGGQaaaaOGaaiyk aiaad6gadaWgaaWcbaGaamyAaaqabaaaaa@4341@

as required.

 

4. As an expedient approximation we can also assume Δ n 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaO GaeyisISRaaGimaaaa@35DA@  in step (2), so taking the dot product of both sides with t shows that

0= N a tδ y a t N a ξ y a δ ξ * = N a tδ y a qδ ξ * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiabg2da9iabgkHiTiaad6eada ahaaWcbeqaaiaadggaaaGccaWH0bGaeyyXICTaeqiTdqMaaCyEamaa CaaaleqabaGaamyyaaaakiabgkHiTiaahshacqGHflY1daWcaaqaai abgkGi2kaad6eadaahaaWcbeqaaiaadggaaaaakeaacqGHciITcqaH +oaEaaGaaCyEamaaCaaaleqabaGaamyyaaaakiabes7aKjabe67a4n aaCaaaleqabaGaaiOkaaaakiabg2da9iabgkHiTiaad6eadaahaaWc beqaaiaadggaaaGccaWH0bGaeyyXICTaeqiTdqMaaCyEamaaCaaale qabaGaamyyaaaakiabgkHiTiaadghacqaH0oazcqaH+oaEdaahaaWc beqaaiaacQcaaaaaaa@5ECB@

We therefore see that

ξ * u k b = N b q t k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaH+oaEdaahaa WcbeqaaiaacQcaaaaakeaacqGHciITcaWG1bWaa0baaSqaaiaadUga aeaacaWGIbaaaaaakiabg2da9iabgkHiTmaalaaabaGaamOtamaaCa aaleqabaGaamOyaaaaaOqaaiaadghaaaGaamiDamaaBaaaleaacaWG Rbaabeaaaaa@406B@

 

5. Since nt=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiabgwSixlaahshacqGH9aqpca aIWaaaaa@36DE@  it follows that tδn=nδt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDaiabgwSixlabes7aKjaah6gacq GH9aqpcqGHsislcaWHUbGaeyyXICTaeqiTdqMaaCiDaaaa@3E99@ .   Recalling that qt= N a ξ y a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCaiaahshacqGH9aqpdaWcaaqaai abgkGi2kaad6eadaahaaWcbeqaaiaadggaaaaakeaacqGHciITcqaH +oaEaaGaaCyEamaaCaaaleqabaGaamyyaaaaaaa@3C7D@ , we see that

qδt+δqt= 2 N a ξ 2 y a δ ξ * + N a ξ δ y a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCaiabes7aKjaahshacqGHRaWkcq aH0oazcaWGXbGaaCiDaiabg2da9maalaaabaGaeyOaIy7aaWbaaSqa beaacaaIYaaaaOGaamOtamaaCaaaleqabaGaamyyaaaaaOqaaiabgk Gi2kabe67a4naaCaaaleqabaGaaGOmaaaaaaGccaWH5bWaaWbaaSqa beaacaWGHbaaaOGaeqiTdqMaeqOVdG3aaWbaaSqabeaacaGGQaaaaO Gaey4kaSYaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaWGHbaa aaGcbaGaeyOaIyRaeqOVdGhaaiabes7aKjaahMhadaahaaWcbeqaai aadggaaaaaaa@5404@

so that

qtδn=qnδt=n 2 N a ξ 2 y a δ ξ * N a ξ nδ y a =pδ ξ * N a ξ nδ y a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCaiaahshacqGHflY1cqaH0oazca WHUbGaeyypa0JaeyOeI0IaamyCaiaah6gacqGHflY1cqaH0oazcaWH 0bGaeyypa0JaeyOeI0IaaCOBaiabgwSixpaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaamOtamaaCaaaleqabaGaamyyaaaaaOqa aiabgkGi2kabe67a4naaCaaaleqabaGaaGOmaaaaaaGccaWH5bWaaW baaSqabeaacaWGHbaaaOGaeqiTdqMaeqOVdG3aaWbaaSqabeaacaGG QaaaaOGaeyOeI0YaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaaca WGHbaaaaGcbaGaeyOaIyRaeqOVdGhaaiaah6gacqGHflY1cqaH0oaz caWH5bWaaWbaaSqabeaacaWGHbaaaOGaeyypa0JaeyOeI0IaamiCai abes7aKjabe67a4naaCaaaleqabaGaaiOkaaaakiabgkHiTmaalaaa baGaeyOaIyRaamOtamaaCaaaleqabaGaamyyaaaaaOqaaiabgkGi2k abe67a4baacaWHUbGaeyyXICTaeqiTdqMaaCyEamaaCaaaleqabaGa amyyaaaaaaa@78C7@

 

6. Noting that δn MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCOBaaaa@337C@  is parallel to t and using the result of (4) then shows that

n i u k b = p q 2 N b t i t k N b ξ t i n k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGUbWaaSbaaS qaaiaadMgaaeqaaaGcbaGaeyOaIyRaamyDamaaDaaaleaacaWGRbaa baGaamOyaaaaaaGccqGH9aqpdaWcaaqaaiaadchaaeaacaWGXbWaaW baaSqabeaacaaIYaaaaaaakiaad6eadaahaaWcbeqaaiaadkgaaaGc caWG0bWaaSbaaSqaaiaadMgaaeqaaOGaamiDamaaBaaaleaacaWGRb aabeaakiabgkHiTmaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGa amOyaaaaaOqaaiabgkGi2kabe67a4baacaWG0bWaaSbaaSqaaiaadM gaaeqaaOGaamOBamaaBaaaleaacaWGRbaabeaaaaa@4EA5@

Finally, differentiating (3) and using (4) and (6) gives the required second derivative of Δ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdq0aaSbaaSqaaiaad6gaaeqaaa aa@3365@

 

As usual the virtual work equation looks confusing in index notation, but the expressions for the stiffness matrix and residual force vector look simpler when expressed in matrix form.   We create a single contact element for each slave node, which also is attached to two (for a linear master segment) nodes on the master surface, as well as a Lagrange multiplier node with a single degree of freedom.  The residual force vector and stiffness for this element are assembled into the global system of equations in the usual way. The degrees of freedom for the contact element can be ordered as u 1 1 , u 2 1 , u 1 2 ,λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWG1bWaa0baaSqaaiaaig daaeaacaaIXaaaaOGaaiilaiaadwhadaqhaaWcbaGaaGOmaaqaaiaa igdaaaGccaGGSaGaamyDamaaDaaaleaacaaIXaaabaGaaGOmaaaaki aacYcacqWIVlctcqaH7oaBaiaawUfacaGLDbaaaaa@407B@ , in which case the element residual force vector and stiffness matrix have the form:

r el = λ N 1 n 1 λ N 1 n 2 λ N 2 n 1 λ N 2 n 2 λ N 3 n 1 λ N 3 n 2 Δ n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCamaaBaaaleaacaWGLbGaamiBaa qabaGccqGH9aqpdaWadaqaauaabeqabCaaaaqaaiabgkHiTiabeU7a Sjaad6eadaahaaWcbeqaaiaaigdaaaGccaWGUbWaaSbaaSqaaiaaig daaeqaaaGcbaGaeyOeI0Iaeq4UdWMaamOtamaaCaaaleqabaGaaGym aaaakiaad6gadaWgaaWcbaGaaGOmaaqabaaakeaacqGHsislcqaH7o aBcaWGobWaaWbaaSqabeaacaaIYaaaaOGaamOBamaaBaaaleaacaaI XaaabeaaaOqaaiabgkHiTiabeU7aSjaad6eadaahaaWcbeqaaiaaik daaaGccaWGUbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOeI0Iaeq4U dWMaamOtamaaCaaaleqabaGaaG4maaaakiaad6gadaWgaaWcbaGaaG ymaaqabaaakeaacqGHsislcqaH7oaBcaWGobWaaWbaaSqabeaacaaI ZaaaaOGaamOBamaaBaaaleaacaaIYaaabeaaaOqaaiabfs5aenaaBa aaleaacaWGUbaabeaaaaaakiaawUfacaGLDbaaaaa@5F4F@

k el = λ q μτ+τμ λp q 2 ττωννω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4AamaaBaaaleaacaWGLbGaamiBaa qabaGccqGH9aqpdaWcaaqaaiabeU7aSbqaaiaadghaaaWaaeWaaeaa caWH8oGaey4LIqSaaCiXdiabgUcaRiaahs8acqGHxkcXcaWH8oaaca GLOaGaayzkaaGaeyOeI0YaaSaaaeaacqaH7oaBcaWGWbaabaGaamyC amaaCaaaleqabaGaaGOmaaaaaaGccaWHepGaey4LIqSaaCiXdiabgk HiTiaahM8acqGHxkcXcaWH9oGaeyOeI0IaaCyVdiabgEPielaahM8a aaa@58B2@

where ab a i b j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyaiabgEPielaahkgacqGHHjIUca WGHbWaaSbaaSqaaiaadMgaaeqaaOGaamOyamaaBaaaleaacaWGQbaa beaaaaa@3A93@  denotes an outer product, and

τ= N 1 t 1 N 1 t 2 N 2 t 1 N 2 t 2 N 3 t 1 N 3 t 2 0 ν= N 1 n 1 N 1 n 2 N 2 n 1 N 2 n 2 N 3 n 1 N 3 n 2 0 μ= N 1 ξ n 1 N 1 ξ n 2 N 2 ξ n 1 N 2 ξ n 2 N 3 ξ n 1 N 3 ξ n 2 0 ω= 0 0 0 0 0 0 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHepGaeyypa0ZaamWaaeaafa qabeqahaaaaeaacaWGobWaaWbaaSqabeaacaaIXaaaaOGaamiDamaa BaaaleaacaaIXaaabeaaaOqaaiaad6eadaahaaWcbeqaaiaaigdaaa GccaWG0bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOtamaaCaaaleqa baGaaGOmaaaakiaadshadaWgaaWcbaGaaGymaaqabaaakeaacaWGob WaaWbaaSqabeaacaaIYaaaaOGaamiDamaaBaaaleaacaaIYaaabeaa aOqaaiaad6eadaahaaWcbeqaaiaaiodaaaGccaWG0bWaaSbaaSqaai aaigdaaeqaaaGcbaGaamOtamaaCaaaleqabaGaaG4maaaakiaadsha daWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaaaaGaay5waiaaw2faaa qaaiaah27acqGH9aqpdaWadaqaauaabeqabCaaaaqaaiaad6eadaah aaWcbeqaaiaaigdaaaGccaWGUbWaaSbaaSqaaiaaigdaaeqaaaGcba GaamOtamaaCaaaleqabaGaaGymaaaakiaad6gadaWgaaWcbaGaaGOm aaqabaaakeaacaWGobWaaWbaaSqabeaacaaIYaaaaOGaamOBamaaBa aaleaacaaIXaaabeaaaOqaaiaad6eadaahaaWcbeqaaiaaikdaaaGc caWGUbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOtamaaCaaaleqaba GaaG4maaaakiaad6gadaWgaaWcbaGaaGymaaqabaaakeaacaWGobWa aWbaaSqabeaacaaIZaaaaOGaamOBamaaBaaaleaacaaIYaaabeaaaO qaaiaaicdaaaaacaGLBbGaayzxaaaabaGaaCiVdiabg2da9maadmaa baqbaeqabeWbaaaabaWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabe aacaaIXaaaaaGcbaGaeyOaIyRaeqOVdGhaaiaad6gadaWgaaWcbaGa aGymaaqabaaakeaadaWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaai aaigdaaaaakeaacqGHciITcqaH+oaEaaGaamOBamaaBaaaleaacaaI YaaabeaaaOqaamaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGaaG OmaaaaaOqaaiabgkGi2kabe67a4baacaWGUbWaaSbaaSqaaiaaigda aeqaaaGcbaWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaaIYa aaaaGcbaGaeyOaIyRaeqOVdGhaaiaad6gadaWgaaWcbaGaaGOmaaqa baaakeaadaWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaaiodaaa aakeaacqGHciITcqaH+oaEaaGaamOBamaaBaaaleaacaaIXaaabeaa aOqaamaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGaaG4maaaaaO qaaiabgkGi2kabe67a4baacaWGUbWaaSbaaSqaaiaaikdaaeqaaaGc baGaaGimaaaaaiaawUfacaGLDbaacaaMc8oabaGaaCyYdiabg2da9m aadmaabaqbaeqabeWbaaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGymaaaaaiaawUfaca GLDbaaaaaa@A906@

q= N a ξ y a p=n 2 N a ξ 2 y a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCaiabg2da9maaemaabaWaaSaaae aacqGHciITcaWGobWaaWbaaSqabeaacaWGHbaaaaGcbaGaeyOaIyRa eqOVdGhaaiaahMhadaahaaWcbeqaaiaadggaaaaakiaawEa7caGLiW oacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaadchacqGH9aqpcaWHUbGaeyyXIC9aaS aaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWGobWaaWbaaSqa beaacaWGHbaaaaGcbaGaeyOaIyRaeqOVdG3aaWbaaSqabeaacaaIYa aaaaaakiaahMhadaahaaWcbeqaaiaadggaaaaaaa@5F6B@

 

 

 


Example: The figures above show simple examples of master-slave contact between two elements (both are linear 4 noded small strain elements with a hypoelastic material model).   The base of the larger, bottom element is prevented from displacing vertically, and the leftmost node on the base is fixed. A prescribed vertical displacement is applied to the two nodes at the top of the upper, smaller element, and a horizontal displacement is imposed on its leftmost upper node.   Fig. (a) shows that when upper surface of the larger element is selected as master surface, the contact element correctly enforces the zero penetration boundary condition at the contact between the two (deformed) elements, while allowing the two to slide parallel to the contact.  Fig. (b) shows that switching master and slave element can sometimes affect the behavior of contact elements.   When the base of the smaller element is selected as the master surface, as in Fig (b), the slave nodes on the larger base element do not contact the master surface, and the overlap between the two elements is not detected.    This is a somewhat extreme example, but in general good mesh design will improve both the accuracy and convergence of a finite element simulation of contact between two or more solids.

 

A code that runs the test in this example is provided in the file FEM_Contact.m (along with input file Contact_example.txt) on the github site at

https://github.com/albower/Applied_Mechanics_of_Solids/