6.3 Bounding theorems in plasticity and their applications

 

To set the background for plastic limit analysis, it is helpful to review the behavior of an elastic-plastic solid or structure subjected to mechanical loading.  The solution to an internally-pressurized elastic-perfectly plastic sphere given in Section 6.1 provides a representative example.  All elastic-perfectly plastic structures will exhibit similar behavior.  In particular

 

· An inelastic solid will reach yield at some critical value of applied load.

 

· If the load exceeds yield, a plastic region starts to spread through the solid. As an increasing area of the solid reaches yield, the displacements in the structure progressively increase.

 

· At a critical load, the plastic region becomes large enough to allow unconstrained plastic flow in the solid. The load cannot be increased beyond this point. The solid is said to collapse

 

 

Strain hardening will influence the results quantitatively, but if the solid has a limiting yield stress (a stress beyond which it can never harden) its behavior will be qualitatively similar.

 

In a plasticity calculation, often the two most interesting results are (a) the critical load where the solid starts to yield; and (b) the critical load where it collapses.  Of course, we don’t need to solve a plasticity problem to find the yield point MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  we only need the elastic fields.  In many design problems this is all we need, since plastic flow must be avoided more often than not.  But there are situations where some plasticity can be tolerated in a structure or component; and there are even some situations where it’s desirable (e.g. in designing crumple zones in cars).  In this situation, we usually would like to know the collapse load for the solid.  It would be really nice to find some way to get the collapse load without having to solve the full boundary value problem.

 

This is the motivation for plastic limit analysis.  The limit theorems of plasticity provide a quick way to estimate collapse loads, without needing any fancy calculations.  In fact, collapse loads are often much easier to find than the yield point!

 

In this section, we derive several useful theorems of plastic limit analysis and illustrate their applications.

 

 

 

6.3.1 Definition of the plastic dissipation

 

Consider a rigid perfectly plastic solid, which has mass density ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@ , and a Von-Mises yield surface with yield stress in uniaxial tension Y. By definition, the elastic strains are zero in a rigid plastic material: the figure shows the stress-strain curve. The solid is subjected to tractions t * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaaiOkaaaaaa a@32B8@  on the its boundary.  The solid may also be subjected to a body force b (per unit mass) acting on the interior of the solid.  Assume that the loading is sufficient to cause the solid to collapse.

 

 

Velocity discontinuities: Note that the velocity and stress fields in a collapsing rigid plastic solid need not necessarily be continuous.  The solution often has shear discontinuities, as illustrated below. In the picture, the top part of the solid slides relative to the bottom part.  We need a way to describe this kind of deformation.  To do so,

 

1. We assume that the velocity field u ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyDayaacaaaaa@31E7@  at collapse may have a finite set of such shear discontinuities, which occur over a collection of surfaces S MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uaaaa@31B7@ .  Let m be a unit vector normal to the surface at some point , and let u ˙ ± MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyDayaacaWaaWbaaSqabeaacqGHXc qSaaaaaa@3401@    σ ij ± MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaeyySaelaaaaa@369A@  denote the limiting values of velocity and stress σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AB@  on the two sides of the surface.

 

2. To ensure that no holes open up in the material, the velocity discontinuity must satisfy

( u ˙ + u ˙ )m=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiqahwhagaGaamaaCaaaleqaba Gaey4kaScaaOGaeyOeI0IabCyDayaacaWaaWbaaSqabeaacqGHsisl aaGccaGGPaGaeyyXICTaaCyBaiabg2da9iaaicdaaaa@3C70@

 

3. The solids immediately adjacent to the discontinuity exert equal and opposite forces on each other.  Therefore

σ ij + m i = σ ij m i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaey4kaScaaOGaamyBamaaBaaaleaacaWGPbaabeaakiabg2da 9iabeo8aZnaaDaaaleaacaWGPbGaamOAaaqaaiabgkHiTaaakiaad2 gadaWgaaWcbaGaamyAaaqabaaaaa@3F84@

 

4. We will use the symbol [[ u ˙ ]] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaacUfaceWG1bGbaiaacaGGDb Gaaiyxaaaa@3563@  to denote the relative velocity of sliding across the discontinuity, i.e.

[[ u ˙ ]]= u ˙ + u ˙ = u ˙ i + u ˙ i u ˙ i + u ˙ i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaacUfaceWG1bGbaiaacaGGDb Gaaiyxaiabg2da9maaemaabaGabCyDayaacaWaaWbaaSqabeaacqGH RaWkaaGccqGHsislceWH1bGbaiaadaahaaWcbeqaaiabgkHiTaaaaO Gaay5bSlaawIa7aiabg2da9maakaaabaWaaeWaaeaaceWG1bGbaiaa daqhaaWcbaGaamyAaaqaaiabgUcaRaaakiabgkHiTiqadwhagaGaam aaDaaaleaacaWGPbaabaGaeyOeI0caaaGccaGLOaGaayzkaaWaaeWa aeaaceWG1bGbaiaadaqhaaWcbaGaamyAaaqaaiabgUcaRaaakiabgk HiTiqadwhagaGaamaaDaaaleaacaWGPbaabaGaeyOeI0caaaGccaGL OaGaayzkaaaaleqaaaaa@510D@

 

5. The yield criterion and plastic flow rule require that σ ij m j ( u ˙ i + u ˙ i )=Y[[u]]/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad2gadaWgaaWcbaGaamOAaaqabaGccaGGOaGabmyDayaa caWaa0baaSqaaiaadMgaaeaacqGHRaWkaaGccqGHsislceWG1bGbai aadaqhaaWcbaGaamyAaaqaaiabgkHiTaaakiaacMcacqGH9aqpcaWG zbGaai4waiaacUfacaWG1bGaaiyxaiaac2facaGGVaWaaOaaaeaaca aIZaaaleqaaaaa@471A@  on any surfaces of velocity discontinuity. 

 

 

Kinematically admissible collapse mechanism: The kinematically admissible collapse mechanism is analogous to the kinematically admissible displacement field that was introduced to define the potential energy of an elastic solid.  By definition, a kinematically admissible collapse mechanism is any velocity field v satisfying v i / x i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamODamaaBaaaleaacaWGPb aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaOGa eyypa0JaaGimaaaa@3A5F@  (i.e. v is volume preserving)

 

Like u, the virtual velocity v may have a finite set of discontinuities across surfaces S ^ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4uayaajaaaaa@31C7@  with normal m ^ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaajaaaaa@31E5@  (these are not necessarily the discontinuity surfaces for the actual collapse mechanism).  We use

[[v]]= v + v = v i + v i v i + v i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaacUfacaWG2bGaaiyxaiaac2 facqGH9aqpdaabdaqaaiaahAhadaahaaWcbeqaaiabgUcaRaaakiab gkHiTiaahAhadaahaaWcbeqaaiabgkHiTaaaaOGaay5bSlaawIa7ai abg2da9maakaaabaWaaeWaaeaacaWG2bWaa0baaSqaaiaadMgaaeaa cqGHRaWkaaGccqGHsislcaWG2bWaa0baaSqaaiaadMgaaeaacqGHsi slaaaakiaawIcacaGLPaaadaqadaqaaiaadAhadaqhaaWcbaGaamyA aaqaaiabgUcaRaaakiabgkHiTiaadAhadaqhaaWcbaGaamyAaaqaai abgkHiTaaaaOGaayjkaiaawMcaaaWcbeaaaaa@50D5@

to denote the magnitude of the velocity discontinuity. We also define the virtual strain rate

ε ˙ ^ ij = 1 2 ( v i x j + v j x i ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiGbaKaadaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaa caGGOaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadMgaaeqaaa GcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaGccqGHRaWk daWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamOAaaqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaakiaacMcaaaa@47B3@

 (note that ε ˙ ^ kk =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiGbaKaadaWgaaWcbaGaam 4AaiaadUgaaeqaaOGaeyypa0JaaGimaaaa@3675@  ) and the effective virtual plastic strain rate

ε ¯ ˙ ^ p = 2 ε ˙ ^ ij ε ˙ ^ ij /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaeHbaiGbaKaadaahaaWcbe qaaiaadchaaaGccqGH9aqpdaGcaaqaaiaaikdacuaH1oqzgaGagaqc amaaBaaaleaacaWGPbGaamOAaaqabaGccuaH1oqzgaGagaqcamaaBa aaleaacaWGPbGaamOAaaqabaGccaGGVaGaaG4maaWcbeaaaaa@3ED3@

 

 

Plastic Dissipation: Finally, we define the plastic dissipation associated with the virtual velocity field v as

Φ(v)= R Y ε ¯ ˙ ^ p dV+ S ^ Y 3 [[v]]dA R ρ 0 b i v i dA R t i * v i dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiaahAhacaGGPaGaey ypa0Zaa8quaeaacaWGzbGafqyTduMbaeHbaiGbaKaadaahaaWcbeqa aiaadchaaaaabaGaamOuaaqab0Gaey4kIipakiaadsgacaWGwbGaey 4kaSYaa8quaeaadaWcaaqaaiaadMfaaeaadaGcaaqaaiaaiodaaSqa baaaaOGaai4waiaacUfacaWG2bGaaiyxaiaac2facaWGKbGaamyqaa WcbaGabm4uayaajaaabeqdcqGHRiI8aOGaeyOeI0Yaa8quaeaacqaH bpGCdaWgaaWcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaaiaadMgaae qaaOGaamODamaaBaaaleaacaWGPbaabeaakiaadsgacaWGbbaaleaa caWGsbaabeqdcqGHRiI8aOGaeyOeI0Yaa8quaeaacaWG0bWaa0baaS qaaiaadMgaaeaacaGGQaaaaOGaamODamaaBaaaleaacaWGPbaabeaa kiaadsgacaWGbbaaleaacqGHciITcaWGsbaabeqdcqGHRiI8aaaa@6338@

 

The terms in this expression have the following physical interpretation:

 

1. The first integral represents the work dissipated in plastically straining the solid;

 

2. The second integral represents the work dissipated by plastic shearing on the velocity discontinuities;

 

3. The third integral is the rate of mechanical work done by body forces

 

4. The fourth integral is the rate of mechanical work done by the prescribed surface tractions.

 

 

 

6.3.2. The Principle of Minimum Plastic Dissipation

 

Let u ˙ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyDayaacaaaaa@31E7@  denote the actual velocity field that causes a rigid plastic solid to collapse under a prescribed loading.  Let v be any kinematically admissible collapse mechanism.  Let Φ(v) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiaahAhacaGGPaaaaa@34B2@  denote the plastic dissipation, as defined in the preceding section.  Then

 

1. Φ(v)Φ( u ˙ ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiaahAhacaGGPaGaey yzImRaeuOPdyKaaiikaiqahwhagaGaaiaacMcaaaa@3A52@

 

2. Φ( u ˙ )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiqahwhagaGaaiaacM cacqGH9aqpcaaIWaaaaa@367A@

 

Thus, Φ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyeaaa@3259@  is an absolute minimum for v=u MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODaiabg2da9iaahwhaaaa@33E2@  - in other words, the actual velocity field at collapse minimizes Φ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyeaaa@3259@ .  Moreover, Φ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyeaaa@3259@  is zero for the actual collapse mechanism.

 

 

Derivation: Begin by summarizing the equations governing the actual collapse solution. Let [ u ˙ i , ε ˙ ij , σ ij ] MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiqadwhagaGaamaaBaaaleaaca WGPbaabeaakiaacYcacuaH1oqzgaGaamaaBaaaleaacaWGPbGaamOA aaqabaGccaGGSaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaki aac2faaaa@3DBF@  denote the actual velocity, strain rate and stress in the solid at collapse. Let S ij = σ ij σ kk δ ij /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyOeI0Iaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKn aaBaaaleaacaWGPbGaamOAaaqabaGccaGGVaGaaG4maaaa@4295@  denote the deviatoric stress. The fields must satisfy governing equations and boundary conditions

 

· Strain-displacement relation ε ij =( u i / x j + u j / x i )/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaacIcacqGHciITcaWG1bWaaSbaaSqaaiaadMga aeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaGccq GHRaWkcqGHciITcaWG1bWaaSbaaSqaaiaadQgaaeqaaOGaai4laiab gkGi2kaadIhadaWgaaWcbaGaamyAaaqabaGccaGGPaGaai4laiaaik daaaa@48C7@

 

· Stress equilibrium σ ij /x i + ρ 0 b j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWG4bGaaCjaVpaaBaaaleaa caWGPbaabeaakiabgUcaRiabeg8aYnaaBaaaleaacaaIWaaabeaaki aadkgadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcaaIWaaaaa@433C@

 

· Plastic flow rule and yield criterion

ε ˙ ij = ε ¯ ˙ p 3 2 S ij Y 3 2 S ij S ij =Y 0 3 2 S ij S ij <Y       MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0ZaaiqaaeaafaqabeGabaaabaGafqyTduMb aeHbaiaadaahaaWcbeqaaiaadchaaaGcdaWcaaqaaiaaiodaaeaaca aIYaaaamaalaaabaGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaaa keaacaWGzbaaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVpaakaaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaWG tbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaadofadaWgaaWcbaGaam yAaiaadQgaaeqaaaqabaGccqGH9aqpcaWGzbaabaGaaGimaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daGcaaqaam aalaaabaGaaG4maaqaaiaaikdaaaGaam4uamaaBaaaleaacaWGPbGa amOAaaqabaGccaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeqaaO GaeyipaWJaamywaaaaaiaawUhaaiaabccacaqGGaGaaeiiaiaabcca caqGGaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdaa@CC80@

On velocity discontinuities, these conditions require that σ ij m j ( u ˙ i + u ˙ i )=Y[[ u ˙ ]]/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad2gadaWgaaWcbaGaamOAaaqabaGccaGGOaGabmyDayaa caWaa0baaSqaaiaadMgaaeaacqGHRaWkaaGccqGHsislceWG1bGbai aadaqhaaWcbaGaamyAaaqaaiabgkHiTaaakiaacMcacqGH9aqpcaWG zbGaai4waiaacUfaceWG1bGbaiaacaGGDbGaaiyxaiaac+cadaGcaa qaaiaaiodaaSqabaaaaa@4723@

 

· Boundary conditions

σ ij n i = t j * x i R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad6gadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG0bWa a0baaSqaaiaadQgaaeaacaGGQaaaaOGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG 4bWaaSbaaSqaaiaadMgaaeqaaOGaeyicI4SaeyOaIyRaamOuaaaa@517A@

 

 

We start by showing that Φ( u ˙ )=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiqahwhagaGaaiaacM cacqGH9aqpcaaIWaaaaa@367A@

 

1. By definition

Φ( u ˙ )= R Y ε ¯ ˙ p dV+ S Y 3 [[ u ˙ ]]dA R ρ 0 b i u ˙ i dA R t i * u ˙ i dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiqahwhagaGaaiaacM cacqGH9aqpdaWdrbqaaiaadMfacuaH1oqzgaqegaGaamaaCaaaleqa baGaamiCaaaaaeaacaWGsbaabeqdcqGHRiI8aOGaamizaiaadAfacq GHRaWkdaWdrbqaamaalaaabaGaamywaaqaamaakaaabaGaaG4maaWc beaaaaGccaGGBbGaai4waiqadwhagaGaaiaac2facaGGDbGaamizai aadgeaaSqaaiaadofaaeqaniabgUIiYdGccqGHsisldaWdrbqaaiab eg8aYnaaBaaaleaacaaIWaaabeaakiaadkgadaWgaaWcbaGaamyAaa qabaGcceWG1bGbaiaadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamyq aaWcbaGaamOuaaqab0Gaey4kIipakiabgkHiTmaapefabaGaamiDam aaDaaaleaacaWGPbaabaGaaiOkaaaakiqadwhagaGaamaaBaaaleaa caWGPbaabeaakiaadsgacaWGbbaaleaacqGHciITcaWGsbaabeqdcq GHRiI8aaaa@6339@

 

2. Note that, using (i) the flow rule, (ii) the condition that S ii =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamyAaa qabaGccqGH9aqpcaaIWaaaaa@358A@  and (iii) the yield criterion

σ ij ε ˙ ij p = σ ij ε ¯ ˙ p 3 2 S ij Y =( S ij + σ kk δ ij ) ε ¯ ˙ p 3 2 S ij Y = ε ¯ ˙ p 3 2 S ij S ij Y =Y ε ¯ ˙ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiqbew7aLzaacaWaa0baaSqaaiaadMgacaWGQbaabaGaamiC aaaakiabg2da9iabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccu aH1oqzgaqegaGaamaaCaaaleqabaGaamiCaaaakmaalaaabaGaaG4m aaqaaiaaikdaaaWaaSaaaeaacaWGtbWaaSbaaSqaaiaadMgacaWGQb aabeaaaOqaaiaadMfaaaGaeyypa0JaaiikaiaadofadaWgaaWcbaGa amyAaiaadQgaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaadUgaca WGRbaabeaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccaGG PaGafqyTduMbaeHbaiaadaahaaWcbeqaaiaadchaaaGcdaWcaaqaai aaiodaaeaacaaIYaaaamaalaaabaGaam4uamaaBaaaleaacaWGPbGa amOAaaqabaaakeaacaWGzbaaaiabg2da9iqbew7aLzaaryaacaWaaW baaSqabeaacaWGWbaaaOWaaSaaaeaacaaIZaaabaGaaGOmaaaadaWc aaqaaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaam4uamaaBa aaleaacaWGPbGaamOAaaqabaaakeaacaWGzbaaaiabg2da9iaadMfa cuaH1oqzgaqegaGaamaaCaaaleqabaGaamiCaaaaaaa@6DC5@

 

3. Note that σ ij ε ˙ ij = σ ij ( u i / x j + u j / x i )/2= σ ij u j / x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiqbew7aLzaacaWaaSbaaSqaaiaadMgacaWGQbaabeaakiab g2da9iabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaGGOaGaey OaIyRaamyDamaaBaaaleaacaWGPbaabeaakiaac+cacqGHciITcaWG 4bWaaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaeyOaIyRaamyDamaaBa aaleaacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaa dMgaaeqaaOGaaiykaiaac+cacaaIYaGaeyypa0Jaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaakiabgkGi2kaadwhadaWgaaWcbaGaamOA aaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaaaa a@5D0E@  from the symmetry of σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@ . Hence

R Y ε ¯ ˙ p dV= R σ ij ε ˙ ij dV = R σ ij u ˙ j / x i dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGzbGafqyTduMbaeHbai aadaahaaWcbeqaaiaadchaaaaabaGaamOuaaqab0Gaey4kIipakiaa dsgacaWGwbGaeyypa0Zaa8quaeaacqaHdpWCdaWgaaWcbaGaamyAai aadQgaaeqaaOGafqyTduMbaiaadaWgaaWcbaGaamyAaiaadQgaaeqa aOGaamizaiaadAfaaSqaaiaadkfaaeqaniabgUIiYdGccqGH9aqpda Wdrbqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHciIT ceWG1bGbaiaadaWgaaWcbaGaamOAaaqabaGccaGGVaGaeyOaIyRaam iEamaaBaaaleaacaWGPbaabeaakiaadsgacaWGwbaaleaacaWGsbaa beqdcqGHRiI8aaaa@58A1@

 

4. Note that σ ij u j / x i =( σ ij u j )/ x i σ ij / x i u ˙ j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabgkGi2kaadwhadaWgaaWcbaGaamOAaaqabaGccaGGVaGa eyOaIyRaamiEamaaBaaaleaacaWGPbaabeaakiabg2da9iabgkGi2k aacIcacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamyDamaa BaaaleaacaWGQbaabeaakiaacMcacaGGVaGaeyOaIyRaamiEamaaBa aaleaacaWGPbaabeaakiabgkHiTmaabmaabaGaeyOaIyRaeq4Wdm3a aSbaaSqaaiaadMgacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGabmyDayaacaWaaSba aSqaaiaadQgaaeqaaaaa@5873@ .  Substitute into the expression for Φ(u) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiaahwhacaGGPaaaaa@34B1@ , combine the two volume integrals and recall (equilibrium) that σ ij / x i + ρ 0 b j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadMga aeqaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamOyam aaBaaaleaacaWGQbaabeaakiabg2da9iaaicdaaaa@41B4@  to see that

Φ( u ˙ )= R σ ij u ˙ j / x i dV+ S Y 3 [[ u ˙ ]]dA R t i * u ˙ i dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiqahwhagaGaaiaacM cacqGH9aqpdaWdrbqaaiabgkGi2oaabmaabaGaeq4Wdm3aaSbaaSqa aiaadMgacaWGQbaabeaakiqadwhagaGaamaaBaaaleaacaWGQbaabe aaaOGaayjkaiaawMcaaiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaa dMgaaeqaaaqaaiaadkfaaeqaniabgUIiYdGccaWGKbGaamOvaiabgU caRmaapefabaWaaSaaaeaacaWGzbaabaWaaOaaaeaacaaIZaaaleqa aaaakiaacUfacaGGBbGabmyDayaacaGaaiyxaiaac2facaWGKbGaam yqaaWcbaGaam4uaaqab0Gaey4kIipakiabgkHiTmaapefabaGaamiD amaaDaaaleaacaWGPbaabaGaaiOkaaaakiqadwhagaGaamaaBaaale aacaWGPbaabeaakiaadsgacaWGbbaaleaacqGHciITcaWGsbaabeqd cqGHRiI8aaaa@5FE6@

 

5. Apply the divergence theorem to the volume integral in this result.  When doing so, note that we must include contributions from the velocity discontinuity across S as follows

Φ( u ˙ )= R σ ij u ˙ j n i dA+ S σ ij u ˙ j + n i + dA+ S σ ij u ˙ j n i dA+ S Y 3 [[ u ˙ ]]dA R t i * u ˙ i dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiqahwhagaGaaiaacM cacqGH9aqpdaWdrbqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqa baGcceWG1bGbaiaadaWgaaWcbaGaamOAaaqabaGccaWGUbWaaSbaaS qaaiaadMgaaeqaaaqaaiabgkGi2kaadkfaaeqaniabgUIiYdGccaWG KbGaamyqaiabgUcaRmaapefabaGaeq4Wdm3aaSbaaSqaaiaadMgaca WGQbaabeaakiqadwhagaGaamaaDaaaleaacaWGQbaabaGaey4kaSca aOGaamOBamaaDaaaleaacaWGPbaabaGaey4kaScaaaqaaiaadofaae qaniabgUIiYdGccaWGKbGaamyqaiabgUcaRmaapefabaGaeq4Wdm3a aSbaaSqaaiaadMgacaWGQbaabeaakiqadwhagaGaamaaDaaaleaaca WGQbaabaGaeyOeI0caaOGaamOBamaaDaaaleaacaWGPbaabaGaeyOe I0caaaqaaiaadofaaeqaniabgUIiYdGccaWGKbGaamyqaiabgUcaRm aapefabaWaaSaaaeaacaWGzbaabaWaaOaaaeaacaaIZaaaleqaaaaa kiaacUfacaGGBbGabmyDayaacaGaaiyxaiaac2facaWGKbGaamyqaa WcbaGaam4uaaqab0Gaey4kIipakiabgkHiTmaapefabaGaamiDamaa DaaaleaacaWGPbaabaGaaiOkaaaakiqadwhagaGaamaaBaaaleaaca WGPbaabeaakiaadsgacaWGbbaaleaacqGHciITcaWGsbaabeqdcqGH RiI8aaaa@7B41@

 

6. Finally, recall that σ ij n i = t j * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad6gadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG0bWa a0baaSqaaiaadQgaaeaacaGGQaaaaaaa@3A96@  on the boundary, and note that the outward normals to the solids adjacent to S are related to m  by n i + = m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaDaaaleaacaWGPbaabaGaey 4kaScaaOGaeyypa0JaeyOeI0IaamyBamaaBaaaleaacaWGPbaabeaa aaa@37D9@   n i = m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaDaaaleaacaWGPbaabaGaey OeI0caaOGaeyypa0JaamyBamaaBaaaleaacaWGPbaabeaaaaa@36F7@  (see the figure). Thus

Φ( u ˙ )= S σ ij ( u ˙ j + u ˙ j ) m i dA+ S Y 3 [[ u ˙ ]]dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiqahwhagaGaaiaacM cacqGH9aqpcqGHsisldaWdrbqaaiabeo8aZnaaBaaaleaacaWGPbGa amOAaaqabaGccaGGOaGabmyDayaacaWaa0baaSqaaiaadQgaaeaacq GHRaWkaaGccqGHsislceWG1bGbaiaadaqhaaWcbaGaamOAaaqaaiab gkHiTaaakiaacMcacaWGTbWaaSbaaSqaaiaadMgaaeqaaaqaaiaado faaeqaniabgUIiYdGccaWGKbGaamyqaiabgUcaRmaapefabaWaaSaa aeaacaWGzbaabaWaaOaaaeaacaaIZaaaleqaaaaakiaacUfacaGGBb GabmyDayaacaGaaiyxaiaac2facaWGKbGaamyqaaWcbaGaam4uaaqa b0Gaey4kIipaaaa@55CB@

Since σ ij m j ( u ˙ i + u ˙ i )=Y[[u]]/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad2gadaWgaaWcbaGaamOAaaqabaGccaGGOaGabmyDayaa caWaa0baaSqaaiaadMgaaeaacqGHRaWkaaGccqGHsislceWG1bGbai aadaqhaaWcbaGaamyAaaqaaiabgkHiTaaakiaacMcacqGH9aqpcaWG zbGaai4waiaacUfacaWG1bGaaiyxaiaac2facaGGVaWaaOaaaeaaca aIZaaaleqaaaaa@471A@ , we find that Φ(u)=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiaahwhacaGGPaGaey ypa0JaaGimaaaa@3671@  as required.

 

 

Next, we show that Φ(v)0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiaahAhacaGGPaGaey yzImRaaGimaaaa@3732@ .  To this end,

 

1. Let v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaaaa a@32F5@  be a kinematically admissible velocity field as defined in the preceding section, with strain rate

ε ˙ ^ ij = 1 2 ( v i x j + v j x i ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiGbaKaadaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaa caGGOaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadMgaaeqaaa GcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaGccqGHRaWk daWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamOAaaqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaakiaacMcaaaa@47B3@

 

2. Let S ^ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4uayaajaWaaSbaaSqaaiaadMgaca WGQbaabeaaaaa@33D1@  be the stress necessary to drive the kinematically admissible collapse mechanism, which must satisfy the plastic flow rule and the yield criterion

ε ˙ ^ ij = ε ¯ ˙ ^ 3 2 S ^ ij Y 3 S ^ ij S ^ ij /2 =Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiGbaKaadaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeyypa0JafqyTduMbaeHbaiGbaKaadaWcaaqa aiaaiodaaeaacaaIYaaaamaalaaabaGabm4uayaajaWaaSbaaSqaai aadMgacaWGQbaabeaaaOqaaiaadMfaaaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7da GcaaqaaiaaiodaceWGtbGbaKaadaWgaaWcbaGaamyAaiaadQgaaeqa aOGabm4uayaajaWaaSbaaSqaaiaadMgacaWGQbaabeaakiaac+caca aIYaaaleqaaOGaeyypa0Jaamywaaaa@5824@

 

3. Recall that the plastic strains and stresses associated with the kinematically admissible field must satisfy the Principle of Maximum Plastic Resistance (Section 3.7.10), which in the present context implies that

σ ^ ij σ ij ε ˙ ^ ij 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacuaHdpWCgaqcamaaBaaale aacaWGPbGaamOAaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaamyA aiaadQgaaeqaaaGccaGLOaGaayzkaaGafqyTduMbaiGbaKaadaWgaa WcbaGaamyAaiaadQgaaeqaaOGaeyyzImRaaGimaaaa@4164@

To see this, note that σ ^ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaKaadaWgaaWcbaGaamyAai aadQgaaeqaaaaa@34BC@  is the stress required to cause the plastic strain rate  ε ˙ ^ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiGbaKaadaWgaaWcbaGaam yAaiaadQgaaeqaaaaa@34A8@ , while the actual stress state at collapse σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  must satisfy 3 S ij S ij /2 Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaacaaIZaGaam4uamaaBaaale aacaWGPbGaamOAaaqabaGccaWGtbWaaSbaaSqaaiaadMgacaWGQbaa beaakiaac+cacaaIYaaaleqaaOGaeyizImQaamywaaaa@3B9A@ .

 

4. Note that σ ^ ij ε ˙ ^ ij = S ^ ij + σ ^ kk δ ij d ε ¯ ˙ ^ p 3 S ^ ij /2Y=Yd ε ¯ ˙ ^ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaKaadaWgaaWcbaGaamyAai aadQgaaeqaaOGafqyTduMbaiGbaKaadaWgaaWcbaGaamyAaiaadQga aeqaaOGaeyypa0ZaaeWaaeaaceWGtbGbaKaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaey4kaSIafq4WdmNbaKaadaWgaaWcbaGaam4Aaiaa dUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaOGaay jkaiaawMcaaiaadsgacuaH1oqzgaqegaGagaqcamaaCaaaleqabaGa amiCaaaakiaaiodaceWGtbGbaKaadaWgaaWcbaGaamyAaiaadQgaae qaaOGaai4laiaaikdacaWGzbGaeyypa0JaamywaiaadsgacuaH1oqz gaqegaGagaqcamaaCaaaleqabaGaamiCaaaaaaa@565A@ .  Substituting into the principle of maximum plastic resistance and integrating over the volume of the solid shows that

R Y ε ¯ ˙ ^ p dV R σ ij ε ˙ ^ ij dV 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGzbGafqyTduMbaeHbai GbaKaadaahaaWcbeqaaiaadchaaaGccaWGKbGaamOvaaWcbaGaamOu aaqab0Gaey4kIipakiabgkHiTmaapefabaGaeq4Wdm3aaSbaaSqaai aadMgacaWGQbaabeaakiqbew7aLzaacyaajaWaaSbaaSqaaiaadMga caWGQbaabeaakiaadsgacaWGwbaaleaacaWGsbaabeqdcqGHRiI8aO GaeyyzImRaaGimaaaa@49B3@

 

5. Next, note that

σ ij ε ˙ ^ ij = σ ij v i / x j + v j / x i /2= σ ij v j / x i = σ ij v j / x i σ ij / x i v j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiqbew7aLzaacyaajaWaaSbaaSqaaiaadMgacaWGQbaabeaa kiabg2da9iabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGcdaqada qaaiabgkGi2kaadAhadaWgaaWcbaGaamyAaaqabaGccaGGVaGaeyOa IyRaamiEamaaBaaaleaacaWGQbaabeaakiabgUcaRiabgkGi2kaadA hadaWgaaWcbaGaamOAaaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaa leaacaWGPbaabeaaaOGaayjkaiaawMcaaiaac+cacaaIYaGaeyypa0 Jaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkGi2kaadAha daWgaaWcbaGaamOAaaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaale aacaWGPbaabeaakiabg2da9iabgkGi2oaabmaabaGaeq4Wdm3aaSba aSqaaiaadMgacaWGQbaabeaakiaadAhadaWgaaWcbaGaamOAaaqaba aakiaawIcacaGLPaaacaGGVaGaeyOaIyRaamiEamaaBaaaleaacaWG PbaabeaakiabgkHiTmaabmaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaai aadMgacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaa dMgaaeqaaaGccaGLOaGaayzkaaGaamODamaaBaaaleaacaWGQbaabe aaaaa@7981@

 

6. The equilibrium equation shows that σ ij / x i = ρ 0 b j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadMga aeqaaOGaeyypa0JaeyOeI0IaeqyWdi3aaSbaaSqaaiaaicdaaeqaaO GaamOyamaaBaaaleaacaWGQbaabeaaaaa@40FB@ .  Substituting this into the result of (5) and then substituting into the result of (4) shows that

R Y ε ¯ ˙ ^ p dV R σ ij v j / x i dV R ρ 0 b j v j dV 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGzbGafqyTduMbaeHbai GbaKaadaahaaWcbeqaaiaadchaaaGccaWGKbGaamOvaaWcbaGaamOu aaqab0Gaey4kIipakiabgkHiTmaapefabaGaeyOaIy7aaeWaaeaacq aHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamODamaaBaaaleaa caWGQbaabeaaaOGaayjkaiaawMcaaiaac+cacqGHciITcaWG4bWaaS baaSqaaiaadMgaaeqaaOGaamizaiaadAfaaSqaaiaadkfaaeqaniab gUIiYdGccqGHsisldaWdrbqaaiabeg8aYnaaBaaaleaacaaIWaaabe aakiaadkgadaWgaaWcbaGaamOAaaqabaGccaWG2bWaaSbaaSqaaiaa dQgaaeqaaOGaamizaiaadAfaaSqaaiaadkfaaeqaniabgUIiYdGccq GHLjYScaaIWaaaaa@5BE2@

 

7. Apply the divergence theorem to the second integral. When doing so, note that we must include contributions from the velocity discontinuity across S ^ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4uayaajaaaaa@31C8@  as follows

R Y ε ¯ ˙ ^ p dV S ^ σ ij v j n i + dA S ^ σ ij v j n i dA R σ ij v j n i dA R ρ 0 b j v j dV 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGzbGafqyTduMbaeHbai GbaKaadaahaaWcbeqaaiaadchaaaGccaWGKbGaamOvaaWcbaGaamOu aaqab0Gaey4kIipakiabgkHiTmaapefabaGaeq4Wdm3aaSbaaSqaai aadMgacaWGQbaabeaakiaadAhadaWgaaWcbaGaamOAaaqabaGccaWG UbWaa0baaSqaaiaadMgaaeaacqGHRaWkaaGccaWGKbGaamyqaaWcba Gabm4uayaajaaabeqdcqGHRiI8aOGaeyOeI0Yaa8quaeaacqaHdpWC daWgaaWcbaGaamyAaiaadQgaaeqaaOGaamODamaaBaaaleaacaWGQb aabeaakiaad6gadaqhaaWcbaGaamyAaaqaaiabgkHiTaaakiaadsga caWGbbaaleaaceWGtbGbaKaaaeqaniabgUIiYdGccqGHsisldaWdrb qaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWG2bWaaSba aSqaaiaadQgaaeqaaOGaamOBamaaBaaaleaacaWGPbaabeaakiaads gacaWGbbaaleaacqGHciITcaWGsbaabeqdcqGHRiI8aOGaeyOeI0Ya a8quaeaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGIbWaaSbaaS qaaiaadQgaaeqaaOGaamODamaaBaaaleaacaWGQbaabeaakiaadsga caWGwbaaleaacaWGsbaabeqdcqGHRiI8aOGaeyyzImRaaGimaaaa@75BB@

 

8. Recall that σ ij n i = t j * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad6gadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG0bWa a0baaSqaaiaadQgaaeaacaGGQaaaaaaa@3A96@  on the boundary, and note that the outward normals to the solids adjacent to S are related to m  by n i + = m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaDaaaleaacaWGPbaabaGaey 4kaScaaOGaeyypa0JaeyOeI0IaamyBamaaBaaaleaacaWGPbaabeaa aaa@37D9@   n i = m i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaDaaaleaacaWGPbaabaGaey OeI0caaOGaeyypa0JaamyBamaaBaaaleaacaWGPbaabeaaaaa@36F7@ .  Thus

R Y ε ¯ ˙ ^ p dV + S ^ σ ij m ^ j ( v i + v i )dA R b i v i dV 2 R t i * v i dA 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGzbGafqyTduMbaeHbai GbaKaadaahaaWcbeqaaiaadchaaaGccaWGKbGaamOvaaWcbaGaamOu aaqab0Gaey4kIipakiabgUcaRmaapefabaGaeq4Wdm3aaSbaaSqaai aadMgacaWGQbaabeaakiqad2gagaqcamaaBaaaleaacaWGQbaabeaa kiaacIcacaWG2bWaa0baaSqaaiaadMgaaeaacqGHRaWkaaGccqGHsi slcaWG2bWaa0baaSqaaiaadMgaaeaacqGHsislaaGccaGGPaGaamiz aiaadgeacqGHsisldaWdrbqaaiaadkgadaWgaaWcbaGaamyAaaqaba GccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadAfaaSqaaiaa dkfaaeqaniabgUIiYdGccqGHsisldaWdrbqaaiaadshadaqhaaWcba GaamyAaaqaaiaacQcaaaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGa amizaiaadgeaaSqaaiabgkGi2oaaBaaameaacaaIYaaabeaaliaadk faaeqaniabgUIiYdaaleaaceWGtbGbaKaaaeqaniabgUIiYdGccqGH LjYScaaIWaaaaa@6755@

 

9. Finally, note that on S ^ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4uayaajaaaaa@31C7@

σ ij m ^ j ( v i + v i )Y[[v]]/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiqad2gagaqcamaaBaaaleaacaWGQbaabeaakiaacIcacaWG 2bWaa0baaSqaaiaadMgaaeaacqGHRaWkaaGccqGHsislcaWG2bWaa0 baaSqaaiaadMgaaeaacqGHsislaaGccaGGPaGaeyizImQaamywaiaa cUfacaGGBbGaamODaiaac2facaGGDbGaai4lamaakaaabaGaaG4maa Wcbeaaaaa@47CA@

since the shear stress acting on any plane in the solid cannot exceed Y/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaiaac+cadaGcaaqaaiaaiodaaS qabaaaaa@3349@ .  Thus

R Y ε ¯ ˙ ^ p dV + S ^ Y[[v]]/ 3 dA R b i v i dV 2 R t i * v i dA 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGzbGafqyTduMbaeHbai GbaKaadaahaaWcbeqaaiaadchaaaGccaWGKbGaamOvaaWcbaGaamOu aaqab0Gaey4kIipakiabgUcaRmaapefabaGaamywaiaacUfacaGGBb GaamODaiaac2facaGGDbGaai4lamaakaaabaGaaG4maaWcbeaakiaa dsgacaWGbbGaeyOeI0Yaa8quaeaacaWGIbWaaSbaaSqaaiaadMgaae qaaOGaamODamaaBaaaleaacaWGPbaabeaakiaadsgacaWGwbaaleaa caWGsbaabeqdcqGHRiI8aOGaeyOeI0Yaa8quaeaacaWG0bWaa0baaS qaaiaadMgaaeaacaGGQaaaaOGaamODamaaBaaaleaacaWGPbaabeaa kiaadsgacaWGbbaaleaacqGHciITdaWgaaadbaGaaGOmaaqabaWcca WGsbaabeqdcqGHRiI8aaWcbaGabm4uayaajaaabeqdcqGHRiI8aOGa eyyzImRaaGimaaaa@5FF1@

 proving that Φ(v)0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuOPdyKaaiikaiaahAhacaGGPaGaey yzImRaaGimaaaa@3731@  as required.

 

 

 

6.3.3 The Upper Bound Plastic Collapse Theorem

 

Consider a rigid plastic solid, subjected to some distribution of tractions t i * MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaDaaaleaacaWGPbaabaGaai Okaaaaaaa@33A1@  and body forces b i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaWGPbaabeaaaa a@32E0@  as shown in the figure. We will attempt to estimate the factor β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@  by which the loading can be increased before the solid collapses ( β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@  is effectively the factor of safety).  We suppose that the solid will collapse for loading β t i * MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaamiDamaaDaaaleaacaWGPb aabaGaaiOkaaaaaaa@3542@ , β b i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaamOyamaaBaaaleaacaWGPb aabeaaaaa@3481@ .

 

To estimate β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@ , we guess the mechanism of collapse.  The collapse mechanism will be an admissible velocity field, which may have a finite set of discontinuities across surfaces S ^ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4uayaajaaaaa@31C7@  with normal m ^ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyBayaajaaaaa@31E5@ , as discussed in Section 6.2.1.

 

The principle of minimum plastic dissipation then states that

R Y ε ¯ ˙ ^ p dV + S ^ σ ij m ^ j ( v i + v i )dA R β b i v i dV R β t i * v i dA 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGzbGafqyTduMbaeHbai GbaKaadaahaaWcbeqaaiaadchaaaGccaWGKbGaamOvaaWcbaGaamOu aaqab0Gaey4kIipakiabgUcaRmaapefabaGaeq4Wdm3aaSbaaSqaai aadMgacaWGQbaabeaakiqad2gagaqcamaaBaaaleaacaWGQbaabeaa kiaacIcacaWG2bWaa0baaSqaaiaadMgaaeaacqGHRaWkaaGccqGHsi slcaWG2bWaa0baaSqaaiaadMgaaeaacqGHsislaaGccaGGPaGaamiz aiaadgeacqGHsisldaWdrbqaaiabek7aIjaadkgadaWgaaWcbaGaam yAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadAfa aSqaaiaadkfaaeqaniabgUIiYdGccqGHsisldaWdrbqaaiabek7aIj aadshadaqhaaWcbaGaamyAaaqaaiaacQcaaaGccaWG2bWaaSbaaSqa aiaadMgaaeqaaOGaamizaiaadgeaaSqaaiabgkGi2kaadkfaaeqani abgUIiYdaaleaaceWGtbGbaKaaaeqaniabgUIiYdGccqGHLjYScaaI Waaaaa@69A3@

for any collapse mechanism, with equality for the true mechanism of collapse. Therefore

β R Y ε ¯ ˙ ^ p dV+ S ^ Y[[v]]/ 3 dA R b i v i dA + R t i * v i dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyizIm6aaSaaaeaadaWdrb qaaiaadMfacuaH1oqzgaqegaGagaqcamaaCaaaleqabaGaamiCaaaa aeaacaWGsbaabeqdcqGHRiI8aOGaamizaiaadAfacqGHRaWkdaWdrb qaaiaadMfacaGGBbGaai4waiaadAhacaGGDbGaaiyxaiaac+cadaGc aaqaaiaaiodaaSqabaGccaWGKbGaamyqaaWcbaGabm4uayaajaaabe qdcqGHRiI8aaGcbaWaa8quaeaacaWGIbWaaSbaaSqaaiaadMgaaeqa aOGaamODamaaBaaaleaacaWGPbaabeaakiaadsgacaWGbbaaleaaca WGsbaabeqdcqGHRiI8aOGaey4kaSYaa8quaeaacaWG0bWaa0baaSqa aiaadMgaaeaacaGGQaaaaOGaamODamaaBaaaleaacaWGPbaabeaaki aadsgacaWGbbaaleaacqGHciITcaWGsbaabeqdcqGHRiI8aaaaaaa@5EC1@

 

Expressed in words, this equation states that we can obtain an upper bound to the collapse loads by postulating a collapse mechanism, and computing the ratio of the plastic dissipation associated with this mechanism to the work done by the applied loads. 

 

So, we can choose any collapse mechanism, and use it to estimate a safety factor.  The actual safety factor is likely to be lower than our estimate (it will be equal if we guessed right).  This method is evidently inherently unsafe, since it overestimates the safety factor MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  but it is usually possible guess the collapse mechanism quite accurately, and so with practice you can get excellent estimates.

 

 

 

6.3.4 Examples of applications of the upper bound theorem

 

Example 1: collapse load for a uniaxial bar. We will illustrate the bounding theorems using a few examples.  First, we will compute  bounds to the collapse load for a uniaxial bar.  Assume the bar has unit out of plane thickness, for simplicity.

 

To get an upper bound, we guess a collapse mechanism as shown below. The top and bottom half of the bar slide past each other as rigid blocks, as shown, with a velocity discontinuity across the line shown in red.

 


 

The upper bound theorem gives

β R Y ε ¯ ˙ ^ p dV+ S ^ Y[[v]]/ 3 dA R b i v i dA + R t i * v i dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyizIm6aaSaaaeaadaWdrb qaaiaadMfacuaH1oqzgaqegaGagaqcamaaCaaaleqabaGaamiCaaaa aeaacaWGsbaabeqdcqGHRiI8aOGaamizaiaadAfacqGHRaWkdaWdrb qaaiaadMfacaGGBbGaai4waiaadAhacaGGDbGaaiyxaiaac+cadaGc aaqaaiaaiodaaSqabaGccaWGKbGaamyqaaWcbaGabm4uayaajaaabe qdcqGHRiI8aaGcbaWaa8quaeaacaWGIbWaaSbaaSqaaiaadMgaaeqa aOGaamODamaaBaaaleaacaWGPbaabeaakiaadsgacaWGbbaaleaaca WGsbaabeqdcqGHRiI8aOGaey4kaSYaa8quaeaacaWG0bWaa0baaSqa aiaadMgaaeaacaGGQaaaaOGaamODamaaBaaaleaacaWGPbaabeaaki aadsgacaWGbbaaleaacqGHciITcaWGsbaabeqdcqGHRiI8aaaaaaa@5EC1@

In this problem the strain rate vanishes, since we assume the two halves of the bar are rigid.  The plastic dissipation is

S ^ Y[[v]]/ 3 dA =Y( h ˙ /sinθ)(L/cosθ)/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGzbGaai4waiaacUfaca WG2bGaaiyxaiaac2facaGGVaWaaOaaaeaacaaIZaaaleqaaOGaamiz aiaadgeaaSqaaiqadofagaqcaaqab0Gaey4kIipakiabg2da9iaadM facaGGOaGabmiAayaacaGaai4laiGacohacaGGPbGaaiOBaiabeI7a XjaacMcacaGGOaGaamitaiaac+caciGGJbGaai4BaiaacohacqaH4o qCcaGGPaGaai4lamaakaaabaGaaG4maaWcbeaaaaa@4F1D@

The body force vanishes, and

R t i * u ˙ i dA=pL h ˙ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWG0bWaa0baaSqaaiaadM gaaeaacaGGQaaaaOGabmyDayaacaWaaSbaaSqaaiaadMgaaeqaaaqa aiabgkGi2kaadkfaaeqaniabgUIiYdGccaWGKbGaamyqaiabg2da9i aadchacaWGmbGabmiAayaacaaaaa@3FBF@

where h ˙ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmiAayaacaaaaa@31D5@  is the vertical component of the velocity of the top block.  Thus

βp2Y/( 3 sin2θ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaamiCaiabgsMiJkaaikdaca WGzbGaai4laiaacIcadaGcaaqaaiaaiodaaSqabaGcciGGZbGaaiyA aiaac6gacaaIYaGaeqiUdeNaaiykaaaa@3EFC@

The best upper bound occurs for θ=π/4 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyypa0JaeqiWdaNaai4lai aaisdaaaa@36C9@ , giving βp2Y/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaamiCaiabgsMiJkaaikdaca WGzbGaai4lamaakaaabaGaaG4maaWcbeaaaaa@384F@  for the collapse load.

 

 

Example 2: Collapse load for a bar containing a hole. For a slightly more interesting problem, consider the effect of inserting a hole with radius a in the center of the column, as shown below. This time we apply a force to the top of the column, rather than specify the traction distribution in detail.  We will accept any solution that has traction acting on the top surface that is statically equivalent to the applied force.


 

 

A possible collapse mechanism is shown above.  The plastic dissipation is

S ^ Y[[v]]/ 3 dA = Y/ 3 ( h ˙ /sinθ)(L/cosθ2a) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGzbGaai4waiaacUfaca WG2bGaaiyxaiaac2facaGGVaWaaOaaaeaacaaIZaaaleqaaOGaamiz aiaadgeaaSqaaiqadofagaqcaaqab0Gaey4kIipakiabg2da9maabm aabaGaamywaiaac+cadaGcaaqaaiaaiodaaSqabaaakiaawIcacaGL PaaacaGGOaGabmiAayaacaGaai4laiGacohacaGGPbGaaiOBaiabeI 7aXjaacMcacaGGOaGaamitaiaac+caciGGJbGaai4BaiaacohacqaH 4oqCcqGHsislcaaIYaGaamyyaiaacMcaaaa@533F@

The rate of work done by the applied loading is

R t i * u ˙ i dA=P h ˙ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWG0bWaa0baaSqaaiaadM gaaeaacaGGQaaaaOGabmyDayaacaWaaSbaaSqaaiaadMgaaeqaaaqa aiabgkGi2kaadkfaaeqaniabgUIiYdGccaWGKbGaamyqaiabg2da9i aadcfaceWGObGbaiaaaaa@3ECE@

Our upper bound follows as

βPY(L/cosθ2a)/( 3 sinθ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaamiuaiabgsMiJkaadMfaca GGOaGaamitaiaac+caciGGJbGaai4BaiaacohacqaH4oqCcqGHsisl caaIYaGaamyyaiaacMcacaGGVaGaaiikamaakaaabaGaaG4maaWcbe aakiGacohacaGGPbGaaiOBaiabeI7aXjaacMcaaaa@4759@

The best upper bound follows by minimizing this result with respect to θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@ .  The minimizing angle and the corresponding upper bound to the collapse load are plotted below.   Of course, this is an upper bound.  You should be able to find collapse mechanisms that give lower collapse loads!

 


 

Example 3: Force required to indent a rigid platic surface. For our next example, we attempt to find upper and lower bounds to the force required to push a flat plane punch into a rigid plastic solid.  This problem is interesting because an exact solution exists, so we can assess the accuracy of the bounding calculations.

 


 

A possible collapse mechanism is shown above. In each semicircular region we assume a constant circumferential velocity v θ = h ˙ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacqaH4oqCaeqaaO Gaeyypa0JabmiAayaacaaaaa@35C2@ .  To compute the plastic dissipation in one of the regions, adopt a cylindrical-polar coordinate system with origin at the edge of the contact.  The strain distribution follows as

ε ˙ rr = ε ˙ θθ =0 ε ˙ rθ = 1 2 v θ r = h ˙ 2r ε ¯ ˙ ^ p = 2 3 ε ˙ ^ ij ε ˙ ^ ij = h ˙ r 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaH1oqzgaGaamaaBaaaleaaca WGYbGaamOCaaqabaGccqGH9aqpcuaH1oqzgaGaamaaBaaaleaacqaH 4oqCcqaH4oqCaeqaaOGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqbew7aLzaacaWa aSbaaSqaaiaadkhacqaH4oqCaeqaaOGaeyypa0ZaaSaaaeaacaaIXa aabaGaaGOmaaaadaWcaaqaaiaadAhadaWgaaWcbaGaeqiUdehabeaa aOqaaiaadkhaaaGaeyypa0ZaaSaaaeaaceWGObGbaiaaaeaacaaIYa GaamOCaaaaaeaacqGHshI3cuaH1oqzgaqegaGagaqcamaaCaaaleqa baGaamiCaaaakiabg2da9maakaaabaWaaSaaaeaacaaIYaaabaGaaG 4maaaacuaH1oqzgaGagaqcamaaBaaaleaacaWGPbGaamOAaaqabaGc cuaH1oqzgaGagaqcamaaBaaaleaacaWGPbGaamOAaaqabaaabeaaki abg2da9maalaaabaGabmiAayaacaaabaGaamOCamaakaaabaGaaG4m aaWcbeaaaaaaaaa@6CFF@

Thus the plastic dissipation is

R Y ε ¯ ˙ ^ p dV+ S ^ Y[[v]]/ 3 dA =2 0 π 0 a/2 Y h ˙ r 3 rdrdθ+ Y 2 3 h ˙ πa = 2π 3 h ˙ Ya MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWGzbGafqyTduMbaeHbai GbaKaadaahaaWcbeqaaiaadchaaaaabaGaamOuaaqab0Gaey4kIipa kiaadsgacaWGwbGaey4kaSYaa8quaeaacaWGzbGaai4waiaacUfaca WG2bGaaiyxaiaac2facaGGVaWaaOaaaeaacaaIZaaaleqaaOGaamiz aiaadgeaaSqaaiqadofagaqcaaqab0Gaey4kIipakiabg2da9iaaik dadaGadaqaamaapehabaWaa8qCaeaacaWGzbWaaSaaaeaaceWGObGb aiaaaeaacaWGYbWaaOaaaeaacaaIZaaaleqaaaaaaeaacaaIWaaaba Gaamyyaiaac+cacaaIYaaaniabgUIiYdaaleaacaaIWaaabaGaeqiW dahaniabgUIiYdGccaWGYbGaamizaiaadkhacaWGKbGaeqiUdeNaey 4kaSYaaSaaaeaacaWGzbaabaGaaGOmamaakaaabaGaaG4maaWcbeaa aaGcceWGObGbaiaacqaHapaCcaWGHbaacaGL7bGaayzFaaGaeyypa0 ZaaSaaaeaacaaIYaGaeqiWdahabaWaaOaaaeaacaaIZaaaleqaaaaa kiqadIgagaGaaiaadMfacaWGHbaaaa@6BF9@

(note that there’s a velocity discontinuity at r=a). The work done by applied loading is just h ˙ P MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmiAayaacaGaamiuaaaa@32AA@  giving the upper bound

βP2πYa/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaamiuaiabgsMiJkaaikdacq aHapaCcaWGzbGaamyyaiaac+cadaGcaaqaaiaaiodaaSqabaaaaa@3AD2@

The exact solution to this problem was given in Section 6.2.1 as

βP=(π+2)Ya/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaamiuaiabg2da9iaacIcacq aHapaCcqGHRaWkcaaIYaGaaiykaiaadMfacaWGHbGaai4lamaakaaa baGaaG4maaWcbeaaaaa@3C5E@

The error is 17% - close enough for government work.

 

 

 

 Example 4: The figure below shows a simple model of machining.  The objective is to determine the horizontal force P acting on the tool (or workpiece) in terms of the depth of cut h, the tool rake angle α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  and the shear yield stress of the material Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaaaa@31BD@

 


 

To perform the calculation, we adopt a reference frame that moves with the tool.  Thus, the tool appears stationary, while the workpiece moves at speed V w MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaWG3baabeaaaa a@32E2@  to the right.  The collapse mechanism consists of shear across the red line shown in the picture.

 

Elementary geometry gives the chip thickness d as

d=h cos ϕ+α sinϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabg2da9iaadIgadaWcaaqaai GacogacaGGVbGaai4CamaabmaabaGaeqy1dyMaey4kaSIaeqySdega caGLOaGaayzkaaaabaGaci4CaiaacMgacaGGUbGaeqy1dygaaaaa@4110@

Mass conservation (material flowing into slip discontinuity = material flowing out of slip discontinuity) gives the velocity of material in the chip V c MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaWGJbaabeaaaa a@32CE@  as

V c = V w h d = V w sinϕ cos ϕ+α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaWGJbaabeaaki abg2da9iaadAfadaWgaaWcbaGaam4DaaqabaGcdaWcaaqaaiaadIga aeaacaWGKbaaaiabg2da9iaadAfadaWgaaWcbaGaam4DaaqabaGcda WcaaqaaiGacohacaGGPbGaaiOBaiabew9aMbqaaiGacogacaGGVbGa ai4CamaabmaabaGaeqy1dyMaey4kaSIaeqySdegacaGLOaGaayzkaa aaaaaa@4839@

The velocity discontinuity across the shear band is

V ba = V w 2 + V c 2 +2 V c V w sinα = V w 1+ sin 2 ϕ cos 2 ϕ+α +2sinα sinϕ cos ϕ+α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaabdaqaaiaadAfadaWgaaWcba GaamOyaiaadggaaeqaaaGccaGLhWUaayjcSdGaeyypa0ZaaOaaaeaa caWGwbWaa0baaSqaaiaadEhaaeaacaaIYaaaaOGaey4kaSIaamOvam aaDaaaleaacaWGJbaabaGaaGOmaaaakiabgUcaRiaaikdacaWGwbWa aSbaaSqaaiaadogaaeqaaOGaamOvamaaBaaaleaacaWG3baabeaaki GacohacaGGPbGaaiOBaiabeg7aHbWcbeaaaOqaaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabg2da9iaadAfadaWgaaWcbaGaam4DaaqabaGcdaGc aaqaaiaaigdacqGHRaWkdaWcaaqaaiGacohacaGGPbGaaiOBamaaCa aaleqabaGaaGOmaaaakiabew9aMbqaaiGacogacaGGVbGaai4Camaa CaaaleqabaGaaGOmaaaakmaabmaabaGaeqy1dyMaey4kaSIaeqySde gacaGLOaGaayzkaaaaaiabgUcaRiaaikdaciGGZbGaaiyAaiaac6ga cqaHXoqydaWcaaqaaiGacohacaGGPbGaaiOBaiabew9aMbqaaiGaco gacaGGVbGaai4CamaabmaabaGaeqy1dyMaey4kaSIaeqySdegacaGL OaGaayzkaaaaaaWcbeaaaaaa@8282@

The plastic dissipation follows as

W ˙ P = h sinϕ V ab Y 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabm4vayaacaWaaWbaaSqabeaacaWGqb aaaOGaeyypa0ZaaSaaaeaacaWGObaabaGaci4CaiaacMgacaGGUbGa eqy1dygaamaaemaabaGaamOvamaaBaaaleaacaWGHbGaamOyaaqaba aakiaawEa7caGLiWoadaWcaaqaaiaadMfaaeaadaGcaaqaaiaaioda aSqabaaaaaaa@4139@

The upper bound theorem gives

P V w h sinϕ V ab Y 3 P hY 3 sinϕ 1+ sin 2 ϕ cos 2 ϕ+α +2sinα sinϕ cos ϕ+α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGqbGaamOvamaaBaaaleaaca WG3baabeaakiabgsMiJoaalaaabaGaamiAaaqaaiGacohacaGGPbGa aiOBaiabew9aMbaadaabdaqaaiaadAfadaWgaaWcbaGaamyyaiaadk gaaeqaaaGccaGLhWUaayjcSdWaaSaaaeaacaWGzbaabaWaaOaaaeaa caaIZaaaleqaaaaaaOqaaiabgkDiElaadcfacqGHKjYOdaWcaaqaai aadIgacaWGzbaabaWaaOaaaeaacaaIZaaaleqaaOGaci4CaiaacMga caGGUbGaeqy1dygaamaakaaabaGaaGymaiabgUcaRmaalaaabaGaci 4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeqy1dygabaGa ci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacq aHvpGzcqGHRaWkcqaHXoqyaiaawIcacaGLPaaaaaGaey4kaSIaaGOm aiGacohacaGGPbGaaiOBaiabeg7aHnaalaaabaGaci4CaiaacMgaca GGUbGaeqy1dygabaGaci4yaiaac+gacaGGZbWaaeWaaeaacqaHvpGz cqGHRaWkcqaHXoqyaiaawIcacaGLPaaaaaaaleqaaaaaaa@738B@

To obtain the best estimate for P, we need to minimize the right hand side of this expression with respect to ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@ .  This gives

ϕ= tan 1 (1tan(α)) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaeyypa0JaciiDaiaacggaca GGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikaiaaigdacqGH sislciGG0bGaaiyyaiaac6gacaGGOaGaeqySdeMaaiykaiaacMcaaa a@4128@

The resulting upper bound to the machining force is plotted below


 

 

 

6.3.5 The Lower Bound Plastic Collapse Theorem

 

The lower bound theorem provides a safe estimate of the collapse loads for a rigid plastic solid.

 

Consider a rigid plastic solid, subjected to some distribution of tractions t i * MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaDaaaleaacaWGPbaabaGaai Okaaaaaaa@33A1@  and body forces b i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyamaaBaaaleaacaWGPbaabeaaaa a@32E0@ , as shown in the figure. We will attempt to estimate the factor β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@  by which the loading can be increased before the solid collapses ( β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@  is effectively the factor of safety).  We suppose that the solid will collapse for loading β t i * MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaamiDamaaDaaaleaacaWGPb aabaGaaiOkaaaaaaa@3542@ , β b i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaamOyamaaBaaaleaacaWGPb aabeaaaaa@3481@ .

 

To estimate β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@ , we guess the distribution of stress in the solid at collapse.

 

We will denote the guess for the stress distribution by σ ^ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaKaadaWgaaWcbaGaamyAai aadQgaaeqaaaaa@34BC@ .  The stress distribution must

 

1. Satisfy the boundary conditions σ ^ ij n j = β L t i * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaKaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaamOBamaaBaaaleaacaWGQbaabeaakiabg2da9iab ek7aInaaBaaaleaacaWGmbaabeaakiaadshadaqhaaWcbaGaamyAaa qaaiaacQcaaaaaaa@3D4E@ , where β L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdi2aaSbaaSqaaiaadYeaaeqaaa aa@337E@  is a lower bound to β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@

 

2. Satisfy the equations of equilibrium σ ^ ij / x j + β L b i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRafq4WdmNbaKaadaWgaaWcba GaamyAaiaadQgaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGa amOAaaqabaGccqGHRaWkcqaHYoGydaWgaaWcbaGaamitaaqabaGcca WGIbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaaGimaaaa@41BC@  within the solid,

 

3. Must not violate the yield criterion anywhere within the solid, f( σ ^ ij )0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacuaHdpWCgaqcamaaBa aaleaacaWGPbGaamOAaaqabaGccaGGPaGaeyizImQaaGimaaaa@3979@

 

The lower bound theorem states that if any such stress distribution can be found, the solid will not collapse, i.e. β L β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdi2aaSbaaSqaaiaadYeaaeqaaO GaeyizImQaeqOSdigaaa@36DE@ .

 

 

Derivation

 

1. Let [ u ˙ i , ε ˙ ij , σ ij ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiqadwhagaGaamaaBaaaleaaca WGPbaabeaakiaacYcacuaH1oqzgaGaamaaBaaaleaacaWGPbGaamOA aaqabaGccaGGSaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaaki aac2faaaa@3DC0@  denote the actual velocity field in the solid at collapse.  These must satisfy the field equations and constitutive equations listed in Section 6.3.1.

 

2. Let σ ^ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaKaadaWgaaWcbaGaamyAai aadQgaaeqaaaaa@34BC@  denote the guess for the stress field.

 

3. The Principle of Maximum Plastic Resistance (see Section 3.7.10) shows that σ ij σ ^ ij ε ˙ ij 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeyOeI0Iafq4WdmNbaKaadaWgaaWcbaGaamyA aiaadQgaaeqaaaGccaGLOaGaayzkaaGafqyTduMbaiaadaWgaaWcba GaamyAaiaadQgaaeqaaOGaeyyzImRaaGimaaaa@4155@ , since σ ^ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaKaadaWgaaWcbaGaamyAai aadQgaaeqaaaaa@34BC@  is at or below yield.

 

4. Integrating this equation over the volume of the solid, and using the principle of virtual work on the two terms shows that

V σ ij σ ^ ij ε ˙ ij dV= V σ ij n j u ˙ i dA V σ ^ ij n j u ˙ i dA 0 β V t i u ˙ i dA β L V t i u ˙ i dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdrbqaamaabmaabaGaeq4Wdm 3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTiqbeo8aZzaajaWa aSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiqbew7aLz aacaWaaSbaaSqaaiaadMgacaWGQbaabeaakiaadsgacaWGwbGaeyyp a0Zaa8quaeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaam OBamaaBaaaleaacaWGQbaabeaakiqadwhagaGaamaaBaaaleaacaWG PbaabeaakiaadsgacaWGbbaaleaacqGHciITcaWGwbaabeqdcqGHRi I8aOGaeyOeI0Yaa8quaeaacuaHdpWCgaqcamaaBaaaleaacaWGPbGa amOAaaqabaGccaWGUbWaaSbaaSqaaiaadQgaaeqaaOGabmyDayaaca WaaSbaaSqaaiaadMgaaeqaaaqaaiabgkGi2kaadAfaaeqaniabgUIi YdGccaWGKbGaamyqaaWcbaGaamOvaaqab0Gaey4kIipakiabgwMiZk aaicdaaeaacqGHshI3cqaHYoGydaWdrbqaaiaadshadaWgaaWcbaGa amyAaaqabaGcceWG1bGbaiaadaWgaaWcbaGaamyAaaqabaaabaGaey OaIyRaamOvaaqab0Gaey4kIipakiaadsgacaWGbbGaeyyzImRaeqOS di2aaSbaaSqaaiaadYeaaeqaaOWaa8quaeaacaWG0bWaaSbaaSqaai aadMgaaeqaaOGabmyDayaacaWaaSbaaSqaaiaadMgaaeqaaOGaamiz aiaadgeaaSqaaiabgkGi2kaadAfaaeqaniabgUIiYdaaaaa@824C@

 This proves the theorem.

 

 

 

6.3.6 Examples of applications of the lower bound plastic collapse theorem

 

 

Example 1: Collapse load for a plate containing a hole.  A plate with width L contains a hole of radius a at its center, as shown in the figure. The plate is subjected to a tensile force P as shown (the traction distribution is not specified in detail we will accept any solution that has traction acting on the top surface that is statically equivalent to the applied force).

 


 

For a statically admissible stress distribution, we consider the stress field shown in Fig. 6.40, with σ 22 =0 x 1 <a σ 22 =Y x 1 >a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7daabdaqaaiaadIhadaWgaaWcba GaaGymaaqabaaakiaawEa7caGLiWoacqGH8aapcaWGHbGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaa kiabg2da9iaadMfacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVpaaemaabaGaamiEamaaBaaaleaacaaIXaaabeaa aOGaay5bSlaawIa7aiabg6da+iaadggaaaa@761D@ , and all other stress components zero.

 

The estimate for the applied load at collapse follows as β L P=2Y(La) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdi2aaSbaaSqaaiaadYeaaeqaaO Gaamiuaiabg2da9iaaikdacaWGzbGaaiikaiaadYeacqGHsislcaWG HbGaaiykaaaa@3AFA@

 

 

 

Example 2: Rigid indenter in contact with a half-space.  We consider a flat indenter with width a that is pushed into the surface of a half-space by a force P.  The stress state illustrated below will be used to obtain a lower bound to the collapse load in the solid.  

 

 


 

Note that

 

1. Regions C, E, F are stress free

 

2. The stress in regions A and D consists of a state of uniaxial stress, with direction parallel to the boundaries between AC (or AE) and CD (or DF) respectively.  We will denote this stress by σ A mm MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaWbaaSqabeaacaWGbbaaaO GaaCyBaiabgEPielaah2gaaaa@3795@ , where m is a unit vector parallel to the direction of the uniaxial stress.

 

3. The stress state in the triangular region B has principal directions of stress parallel to e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacqaHXoqyaeqaaa aa@3399@ . We will write this stress state as σ 11 B e 1 e 1 + σ 22 B e 2 e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaaigdacaaIXa aabaGaamOqaaaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHxkcX caWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4Wdm3aa0baaS qaaiaaikdacaaIYaaabaGaamOqaaaakiaahwgadaWgaaWcbaGaaGOm aaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaaikdaaeqaaaaa@45B8@

 

 

The stresses in each region must be chosen to satisfy equilibrium, and to ensure that the stress is below yield everywhere.   The stress is constant in each region, so equilibrium is satisfied locally.  However, the stresses are discontinuous across AC, AB, etc.  To satisfy equilibrium, equal and opposite tractions must act on the material surfaces adjacent to the discontinuity, which requires, e.g. that σ ij A n j = σ ij B n j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaamyqaaaakiaad6gadaWgaaWcbaGaamOAaaqabaGccqGH9aqp cqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaacaWGcbaaaOGaamOBam aaBaaaleaacaWGQbaabeaaaaa@3F47@ , where n is a unit vector normal to the boundary between A and B as indicated in Figure 6.41.  We enforce this condition as follows:

 

1. Note that m=cosθ e 1 +sinθ e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBaiabg2da9iGacogacaGGVbGaai 4CaiabeI7aXjaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkciGG ZbGaaiyAaiaac6gacqaH4oqCcaWHLbWaaSbaaSqaaiaaikdaaeqaaa aa@408A@   n=sinθ e 1 +cosθ e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBaiabg2da9iGacohacaGGPbGaai OBaiabeI7aXjaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkciGG JbGaai4BaiaacohacqaH4oqCcaWHLbWaaSbaaSqaaiaaikdaaeqaaa aa@408B@

 

2. Equilibrium across the boundary between A and B requires

σ A mm n= σ 11 B e 1 e 1 + σ 22 B e 2 e 2 n σ A cosθ e 1 +sinθ e 2 2sinθcosθ= σ 11 B e 1 sinθ+ σ 22 B e 2 cosθ σ 11 B =2 σ A cos 2 θ σ 22 B =2 σ A sin 2 θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaahaaWcbeqaaiaadg eaaaGcdaqadaqaaiaah2gacqGHxkcXcaWHTbaacaGLOaGaayzkaaGa eyyXICTaaCOBaiabg2da9maabmaabaGaeq4Wdm3aa0baaSqaaiaaig dacaaIXaaabaGaamOqaaaakiaahwgadaWgaaWcbaGaaGymaaqabaGc cqGHxkcXcaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4Wdm 3aa0baaSqaaiaaikdacaaIYaaabaGaamOqaaaakiaahwgadaWgaaWc baGaaGOmaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaaikdaaeqaaa GccaGLOaGaayzkaaGaeyyXICTaaCOBaaqaaiabgkDiElabeo8aZnaa CaaaleqabaGaamyqaaaakmaabmaabaGaci4yaiaac+gacaGGZbGaeq iUdeNaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiGacohacaGG PbGaaiOBaiabeI7aXjaahwgadaWgaaWcbaGaaGOmaaqabaaakiaawI cacaGLPaaacaaIYaGaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaa c+gacaGGZbGaeqiUdeNaeyypa0Jaeq4Wdm3aa0baaSqaaiaaigdaca aIXaaabaGaamOqaaaakiaahwgadaWgaaWcbaGaaGymaaqabaGcciGG ZbGaaiyAaiaac6gacqaH4oqCcqGHRaWkcqaHdpWCdaqhaaWcbaGaaG OmaiaaikdaaeaacaWGcbaaaOGaaCyzamaaBaaaleaacaaIYaaabeaa kiGacogacaGGVbGaai4CaiabeI7aXbqaaiabgkDiElabeo8aZnaaDa aaleaacaaIXaGaaGymaaqaaiaadkeaaaGccqGH9aqpcaaIYaGaeq4W dm3aaWbaaSqabeaacaWGbbaaaOGaci4yaiaac+gacaGGZbWaaWbaaS qabeaacaaIYaaaaOGaeqiUdeNaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8Uaeq4Wdm3aa0baaSqaaiaaikdacaaIYaaabaGaamOqaa aakiabg2da9iaaikdacqaHdpWCdaahaaWcbeqaaiaadgeaaaGcciGG ZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccqaH4oqCcaaMc8 oaaaa@B613@

 

3. We must now choose σ A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaWbaaSqabeaacaWGbbaaaa aa@3396@  and θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  to maximize the collapse load, while ensuring that the stresses do not exceed yield in regions A or B.   Clearly, this requires σ A =Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaWbaaSqabeaacaWGbbaaaO Gaeyypa0JaeyOeI0Iaamywaaaa@3671@ ; while θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  must be chosen to ensure that σ 22 B σ 11 B <Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacqaHdpWCdaqhaaWcbaGaaG OmaiaaikdaaeaacaWGcbaaaOGaeyOeI0Iaeq4Wdm3aa0baaSqaaiaa igdacaaIXaaabaGaamOqaaaaaOGaay5bSlaawIa7aiabgYda8iaadM faaaa@3F41@ .  This requires 1/2<cosθ< 3 /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaac+cacaaIYaGaeyipaWJaci 4yaiaac+gacaGGZbGaeqiUdeNaeyipaWZaaOaaaeaacaaIZaaaleqa aOGaai4laiaaikdaaaa@3BEC@ .   The largest value for θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  maximizes the bound.

 

4. Finally, substituting for θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  gives σ 22 B =3Y/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaaikdacaaIYa aabaGaamOqaaaakiabg2da9iabgkHiTiaaiodacaWGzbGaai4laiaa ikdaaaa@3A16@ .  We see that the lower bound is P=3Ya/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabg2da9iabgkHiTiaaiodaca WGzbGaamyyaiaac+cacaaIYaaaaa@3798@ .

  

 

 

6.3.7 The lower bound shakedown theorem

 

In this and the next section we derive two important theorems that can be used to estimate the maximum cyclic loads that can be imposed on a component without exceeding yield.  The concept of shakedown in a solid subjected to cyclic loads was introduced in Section 6.1.4, which discussed the behavior of a spherical shell subjected to cyclic internal pressure.   It was shown that, if the first cycle of pressure exceeds yield, residual stresses are introduced into the shell, which may prevent further plastic deformation under subsequent load cycles.  This process is known as shakedown, and the maximum load for which it can occur is known as the shakedown limit

 

We proceed to derive a theorem that can be used to obtain a safe estimate to the maximum cyclic load that can be applied to a structure without inducing cyclic plastic deformation.

 

We consider an elastic-perfectly plastic solid, sketched in the figure. The solid has Young’s modulus E, Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  and has a Von-Mises yield surface with uniaxial tensile yield stress Y, and an associated flow law. Assume that

 

1. The displacement u=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaahcdaaaa@339D@  on part of the boundary of the solid 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@

 

2. The remainder of the boundary  2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  is subjected to a prescribed cycle of traction t * (t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaaiOkaaaaki aacIcacaWG0bGaaiykaaaa@3514@ .   The history of traction is periodic, with a period T.

 

 

Define the following quantities:

 

1. Let [ u i , ε ij , σ ij ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaWgaaWcbaGaamyAaa qabaGccaGGSaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiaa cYcacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiyxaaaa@3DAE@  denote the actual history of displacement, strain and stress induced in the solid by the applied loading.  The strain is partitioned into elastic and plastic parts as ε ij = ε ij e + ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaa dwgaaaGccqGHRaWkcqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaaca WGWbaaaaaa@3FCD@

 

2. Let [ u i ε , ε ij ε , σ ij ε ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaqhaaWcbaGaamyAaa qaaiabew7aLbaakiaacYcacqaH1oqzdaqhaaWcbaGaamyAaiaadQga aeaacqaH1oqzaaGccaGGSaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaeqyTdugaaOGaaiyxaaaa@42A6@  denote the history of displacement, strain and stress induced by the prescribed traction in a perfectly elastic solid with identical geometry.

 

3. We introduce (time dependent) residual stress ρ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34A9@  and residual strain γ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdC2aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3490@  fields, which (by definition) satisfy

σ ij = σ ij ε + ρ ij ε ij = ε ij e + ε ij p = ε ij ε + γ ij + ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabeo8aZnaaDaaaleaacaWGPbGaamOAaaqaaiab ew7aLbaakiabgUcaRiabeg8aYnaaBaaaleaacaWGPbGaamOAaaqaba GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG LbaaaOGaey4kaSIaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaam iCaaaakiabg2da9iabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiab ew7aLbaakiabgUcaRiabeo7aNnaaBaaaleaacaWGPbGaamOAaaqaba GccqGHRaWkcqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWGWbaa aaaa@706B@

Note that, (i) because σ ij ε n j = σ ij n j = t i * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaeqyTdugaaOGaamOBamaaBaaaleaacaWGQbaabeaakiabg2da 9iabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWGUbWaaSbaaS qaaiaadQgaaeqaaOGaeyypa0JaamiDamaaDaaaleaacaWGPbaabaGa aiOkaaaaaaa@4332@  on 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@ , it follows that ρ ij n j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaadMgacaWGQb aabeaakiaad6gadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcaaIWaaa aa@388B@  on  2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@ ; and (ii) because σ ij ε / x j = σ ij / x j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeq4Wdm3aa0baaSqaaiaadM gacaWGQbaabaGaeqyTdugaaOGaai4laiabgkGi2kaadIhadaWgaaWc baGaamOAaaqabaGccqGH9aqpcqGHciITcqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaamOA aaqabaGccqGH9aqpcaaIWaaaaa@483C@  it follows that ρ ij / x j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaeqyWdi3aaSbaaSqaaiaadM gacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQga aeqaaOGaeyypa0JaaGimaaaa@3C14@

 

 

The lower bound shakedown theorem can be stated as follows: The solid is guaranteed to shake down if any time independent residual stress field ρ ¯ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyWdiNbaebadaWgaaWcbaGaamyAai aadQgaaeqaaaaa@34C1@  can be found which satisfies:

 

· The equilibrium equation ρ ¯ ij / x j =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRafqyWdiNbaebadaWgaaWcba GaamyAaiaadQgaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGa amOAaaqabaGccqGH9aqpcaaIWaaaaa@3C2B@ ;

 

· The boundary condition ρ ¯ ij n j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyWdiNbaebadaWgaaWcbaGaamyAai aadQgaaeqaaOGaamOBamaaBaaaleaacaWGQbaabeaakiabg2da9iaa icdaaaa@38A3@  on  2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@ ;

 

· When the residual stress is combined with the elastic solution, the combined stress does not exceed yield f( σ ij ε + ρ ¯ ij )0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacqaHdpWCdaqhaaWcba GaamyAaiaadQgaaeaacqaH1oqzaaGccqGHRaWkcuaHbpGCgaqeamaa BaaaleaacaWGPbGaamOAaaqabaGccaGGPaGaeyizImQaaGimaaaa@3FDE@  at any time during the cycle of load.

 

 

The theorem is valuable because shakedown limits can be estimated using the elastic solution, which is much easier to calculate than the elastic-plastic solution. 

 

Proof of the lower bound theorem:  The proof is one of the most devious in all of solid mechanics. 

 

1. Consider the strain energy associated with the difference between the actual residual stress field ρ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34A9@ , and the guess for the residual stress field ρ ¯ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyWdiNbaebadaWgaaWcbaGaamyAai aadQgaaeqaaaaa@34C1@ , which can be calculated as

W= 1 2 R S ijkl ( ρ ij ρ ¯ ij )( ρ kl ρ ¯ kl ) dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vaiabg2da9maalaaabaGaaGymaa qaaiaaikdaaaWaa8quaeaacaWGtbWaaSbaaSqaaiaadMgacaWGQbGa am4AaiaadYgaaeqaaOGaaiikaiabeg8aYnaaBaaaleaacaWGPbGaam OAaaqabaGccqGHsislcuaHbpGCgaqeamaaBaaaleaacaWGPbGaamOA aaqabaGccaGGPaGaaiikaiabeg8aYnaaBaaaleaacaWGRbGaamiBaa qabaGccqGHsislcuaHbpGCgaqeamaaBaaaleaacaWGRbGaamiBaaqa baGccaGGPaaaleaacaWGsbaabeqdcqGHRiI8aOGaamizaiaadAfaaa a@5214@

where S ijkl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@35A2@  is the elastic compliance tensor.   For later reference note that W has to be positive, because strain energy density is always positive or zero.

 

2. The rate of change of W can be calculated as

dW dt = R S ijkl ( ρ ij ρ ¯ ij ) d ρ kl dt dV0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaam4vaaqaaiaads gacaWG0baaaiabg2da9maapefabaGaam4uamaaBaaaleaacaWGPbGa amOAaiaadUgacaWGSbaabeaakiaacIcacqaHbpGCdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeyOeI0IafqyWdiNbaebadaWgaaWcbaGaamyA aiaadQgaaeqaaOGaaiykamaalaaabaGaamizaiabeg8aYnaaBaaale aacaWGRbGaamiBaaqabaaakeaacaWGKbGaamiDaaaaaSqaaiaadkfa aeqaniabgUIiYdGccaWGKbGaamOvaiabgwMiZkaaicdaaaa@528E@

(to see this, recall that S ijkl = S klij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabg2da9iaadofadaWgaaWcbaGaam4Aaiaa dYgacaWGPbGaamOAaaqabaaaaa@3B74@  )

 

3. Note that S ijkl ρ kl = γ ij = ε ij ε ij p ε ij ε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaakiabeg8aYnaaBaaaleaacaWGRbGaamiBaaqa baGccqGH9aqpcqaHZoWzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey ypa0JaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTiab ew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaadchaaaGccqGHsislcq aH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacqaH1oqzaaaaaa@4EE5@ . Consequently, we see that

dW dt = R ( ρ ij ρ ¯ ij ) d ε ij p dt dV+ R ( ρ ij ρ ¯ ij ) d ε ij dt d ε ij ε dt dV0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaam4vaaqaaiaads gacaWG0baaaiabg2da9iabgkHiTmaapefabaGaaiikaiabeg8aYnaa BaaaleaacaWGPbGaamOAaaqabaGccqGHsislcuaHbpGCgaqeamaaBa aaleaacaWGPbGaamOAaaqabaGccaGGPaWaaSaaaeaacaWGKbGaeqyT du2aa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaaaOqaaiaadsgaca WG0baaaaWcbaGaamOuaaqab0Gaey4kIipakiaadsgacaWGwbGaey4k aSYaa8quaeaacaGGOaGaeqyWdi3aaSbaaSqaaiaadMgacaWGQbaabe aakiabgkHiTiqbeg8aYzaaraWaaSbaaSqaaiaadMgacaWGQbaabeaa kiaacMcadaqadaqaamaalaaabaGaamizaiabew7aLnaaBaaaleaaca WGPbGaamOAaaqabaaakeaacaWGKbGaamiDaaaacqGHsisldaWcaaqa aiaadsgacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacqaH1oqzaa aakeaacaWGKbGaamiDaaaaaiaawIcacaGLPaaaaSqaaiaadkfaaeqa niabgUIiYdGccaWGKbGaamOvaiabgwMiZkaaicdaaaa@70A5@

 

4. Using the principle of virtual work, the second integral can be expressed as an integral over the boundary of the solid

A ( ρ ij ρ ¯ ij ) n j d u i dt d u i ε dt dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaGGOaGaeqyWdi3aaSbaaS qaaiaadMgacaWGQbaabeaakiabgkHiTiqbeg8aYzaaraWaaSbaaSqa aiaadMgacaWGQbaabeaakiaacMcacaWGUbWaaSbaaSqaaiaadQgaae qaaOWaaeWaaeaadaWcaaqaaiaadsgacaWG1bWaaSbaaSqaaiaadMga aeqaaaGcbaGaamizaiaadshaaaGaeyOeI0YaaSaaaeaacaWGKbGaam yDamaaDaaaleaacaWGPbaabaGaeqyTdugaaaGcbaGaamizaiaadsha aaaacaGLOaGaayzkaaaaleaacaWGbbaabeqdcqGHRiI8aOGaamizai aadgeacqGH9aqpcaaIWaaaaa@5195@

To see this, note that ( ρ ij ρ ¯ ij ) n j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiabeg8aYnaaBaaaleaacaWGPb GaamOAaaqabaGccqGHsislcuaHbpGCgaqeamaaBaaaleaacaWGPbGa amOAaaqabaGccaGGPaGaamOBamaaBaaaleaacaWGQbaabeaakiabg2 da9iaaicdaaaa@3EBC@  on 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@ , while u ˙ i u ˙ i ε =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyDayaacaWaaSbaaSqaaiaadMgaae qaaOGaeyOeI0IabmyDayaacaWaa0baaSqaaiaadMgaaeaacqaH1oqz aaGccqGH9aqpcaaIWaaaaa@3983@  on 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@

 

5. The remaining integral in (3) can be re-written as

dW dt = R ( ρ ij ρ ¯ ij ) d ε ij p dt dV= R σ ij ( σ ij ε + ρ ¯ ij ) d ε ij p dt dV0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaam4vaaqaaiaads gacaWG0baaaiabg2da9iabgkHiTmaapefabaGaaiikaiabeg8aYnaa BaaaleaacaWGPbGaamOAaaqabaGccqGHsislcuaHbpGCgaqeamaaBa aaleaacaWGPbGaamOAaaqabaGccaGGPaWaaSaaaeaacaWGKbGaeqyT du2aa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaaaOqaaiaadsgaca WG0baaaaWcbaGaamOuaaqab0Gaey4kIipakiaadsgacaWGwbGaeyyp a0JaeyOeI0Yaa8quaeaadaWadaqaaiabeo8aZnaaBaaaleaacaWGPb GaamOAaaqabaGccqGHsislcaGGOaGaeq4Wdm3aa0baaSqaaiaadMga caWGQbaabaGaeqyTdugaaOGaey4kaSIafqyWdiNbaebadaWgaaWcba GaamyAaiaadQgaaeqaaOGaaiykaaGaay5waiaaw2faamaalaaabaGa amizaiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaadchaaaaake aacaWGKbGaamiDaaaaaSqaaiaadkfaaeqaniabgUIiYdGccaWGKbGa amOvaiabgwMiZkaaicdaaaa@704E@

 

6. Finally, recall that σ ij ε + ρ ¯ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaeqyTdugaaOGaey4kaSIafqyWdiNbaebadaWgaaWcbaGaamyA aiaadQgaaeqaaaaa@3B21@  lies at or below yield, while σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  is at yield and is the stress corresponding to the plastic strain rate ε ˙ ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaqhaaWcbaGaamyAai aadQgaaeaacaWGWbaaaaaa@358F@ .   The principle of maximum plastic resistance therefore shows that σ ij ( σ ij ε + ρ ¯ ij ) ε ˙ ij p 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeyOeI0Iaaiikaiabeo8aZnaaDaaaleaacaWG PbGaamOAaaqaaiabew7aLbaakiabgUcaRiqbeg8aYzaaraWaaSbaaS qaaiaadMgacaWGQbaabeaakiaacMcaaiaawUfacaGLDbaacuaH1oqz gaGaamaaDaaaleaacaWGPbGaamOAaaqaaiaadchaaaGccqGHLjYSca aIWaaaaa@4A72@ .  This inequality and  dW/dt0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEfacaGGVaGaamizaiaads hacqGHLjYScaaIWaaaaa@37BA@  can only be satisfied simultaneously if σ ij ( σ ij ε + ρ ¯ ij ) ε ˙ ij p =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeyOeI0Iaaiikaiabeo8aZnaaDaaaleaacaWG PbGaamOAaaqaaiabew7aLbaakiabgUcaRiqbeg8aYzaaraWaaSbaaS qaaiaadMgacaWGQbaabeaakiaacMcaaiaawUfacaGLDbaacuaH1oqz gaGaamaaDaaaleaacaWGPbGaamOAaaqaaiaadchaaaGccqGH9aqpca aIWaaaaa@49B2@ .  We conclude that either the plastic strain rate vanishes, or σ ij ( σ ij ε + ρ ¯ ij ) =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeyOeI0Iaaiikaiabeo8aZnaaDaaaleaacaWG PbGaamOAaaqaaiabew7aLbaakiabgUcaRiqbeg8aYzaaraWaaSbaaS qaaiaadMgacaWGQbaabeaakiaacMcaaiaawUfacaGLDbaacqGH9aqp caaIWaaaaa@44F9@ .  In either case the solid must shake down to an elastic state.

 

 

 

6.3.8 Examples of applications of the lower bound shakedown theorem

 

 

Example 1: A simple 3 bar problem.  It is traditional to illustrate the concept of shakedown using this problem.  Consider a structure made of three parallel elastic-plastic bars, with Young’s modulus E and cross sectional are A, as shown in the figure.  The two bars labeled 1 and 2 have yield stress Y; the central bar (labeled 3) has yield stress 2Y.  The structure is subjected to a cyclic load with mean value P ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmiuayaaraaaaa@31CD@  and amplitude ΔP MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiuaaaa@331B@ .

 

The elastic limit for the structure is P ¯ ±ΔP=3AY MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmiuayaaraGaeyySaeRaeuiLdqKaam iuaiabg2da9iaaiodacaWGbbGaamywaaaa@395D@ ; the collapse load is P ¯ ±ΔP=4AY MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmiuayaaraGaeyySaeRaeuiLdqKaam iuaiabg2da9iaaisdacaWGbbGaamywaaaa@395E@ .

 

To obtain a lower bound to the shakedown limit, we must

 

1. Calculate the elastic stresses in the structure MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  the axial stress in each bar is σ ε =P/3A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaWbaaSqabeaacqaH1oqzaa GccqGH9aqpcaWGqbGaai4laiaaiodacaWGbbaaaa@3892@

 

2. Find a residual stress distribution in the structure, which satisfies equilibrium and boundary conditions, and which can be added to the elastic stresses to bring them below yield.   A suitable residual stress distribution consists of an axial stress ρ (1) = ρ (2) = ρ 0 , ρ (3) =2 ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaWbaaSqabeaacaGGOaGaaG ymaiaacMcaaaGccqGH9aqpcqaHbpGCdaahaaWcbeqaaiaacIcacaaI YaGaaiykaaaakiabg2da9iabeg8aYnaaBaaaleaacaaIWaaabeaaki aaykW7caaMc8UaaGPaVlaacYcacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlabeg8aYnaaCaaaleqabaGaaiikaiaaiodacaGGPaaaaOGaey ypa0JaeyOeI0IaaGOmaiabeg8aYnaaBaaaleaacaaIWaaabeaaaaa@541D@  in bars 1, 2 and 3. To prevent yield at the maximum and minimum load in all three bars, we require

Y<( P ¯ ΔP)/3A+ ρ 0 ( P ¯ +ΔP)/3A+ ρ 0 <Y 2Y<( P ¯ ΔP)/3A2 ρ 0 ( P ¯ +ΔP)/3A2 ρ 0 <2Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqGHsislcaWGzbGaeyipaWJaai ikaiqadcfagaqeaiabgkHiTiabfs5aejaadcfacaGGPaGaai4laiaa iodacaWGbbGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caGGOaGabmiuayaaraGaey4kaSIaeuiLdqKaamiuaiaacM cacaGGVaGaaG4maiaadgeacqGHRaWkcqaHbpGCdaWgaaWcbaGaaGim aaqabaGccqGH8aapcaWGzbGaaGPaVlaaykW7caaMc8UaaGPaVdqaai abgkHiTiaaikdacaWGzbGaeyipaWJaaiikaiaaykW7ceWGqbGbaeba cqGHsislcqqHuoarcaWGqbGaaiykaiaac+cacaaIZaGaamyqaiabgk HiTiaaikdacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caGGOaGabmiuayaaraGaey4kaSIaeuiLdq KaamiuaiaacMcacaGGVaGaaG4maiaadgeacqGHsislcaaIYaGaeqyW di3aaSbaaSqaaiaaicdaaeqaaOGaeyipaWJaaGOmaiaadMfaaaaa@BA4D@

The first two equations show that ΔP<Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiuaiabgYda8iaadMfaaa a@34FD@ , irrespective of ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@ .  To avoid yield in all bars at the maximum load, we must choose ρ 0 =Y/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0JaeyOeI0Iaamywaiaac+cacaaIZaaaaa@37D1@ , which gives P+ΔP<4AY MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabgUcaRiabfs5aejaadcfacq GH8aapcaaI0aGaamyqaiaadMfaaaa@3838@ . Similarly, to avoid yield in all bars at the minimum load, we must choose ρ 0 =Y/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0Jaamywaiaac+cacaaIZaaaaa@36E4@ , showing that 4AY<( P ¯ ΔP) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaGinaiaadgeacaWGzbGaey ipaWJaaiikaiqadcfagaqeaiabgkHiTiabfs5aejaadcfacaGGPaaa aa@3AA1@ .

 

The various regimes of behavior are summarized in the figure below.


 

Example 2: Shakedown limit for a pressurized spherical shell.  We consider an elastic-perfectly plastic thick-walled shell, with inner radius a and outer radius b.  The inner wall of the shell is subjected to a cyclic pressure, with minimum value zero, and maximum value p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@ , as sketched in the figure

 

 

To estimate the shakedown limit we must

 

1. Calculate the stresses induced by the pressure in an elastic shell.  The solution can be found in Section 6.1.4. 

 

σ RR = p a a 3 b 3 a 3 1 b 3 R 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkfacaWGsb aabeaakiabg2da9maalaaabaGaamiCamaaBaaaleaacaWGHbaabeaa kiaadggadaahaaWcbeqaaiaaiodaaaaakeaadaqadaqaaiaadkgada ahaaWcbeqaaiaaiodaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaI ZaaaaaGccaGLOaGaayzkaaaaaiaaykW7daqadaqaaiaaigdacqGHsi sldaWcaaqaaiaadkgadaahaaWcbeqaaiaaiodaaaaakeaacaWGsbWa aWbaaSqabeaacaaIZaaaaaaaaOGaayjkaiaawMcaaiaaykW7aaa@49B0@   σ θθ = σ ϕϕ = p a a 3 b 3 a 3 1+ b 3 2 R 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaeqy1dyMaeqy1dyga beaakiabg2da9maalaaabaGaamiCamaaBaaaleaacaWGHbaabeaaki aadggadaahaaWcbeqaaiaaiodaaaaakeaadaqadaqaaiaadkgadaah aaWcbeqaaiaaiodaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIZa aaaaGccaGLOaGaayzkaaaaaiaaykW7daqadaqaaiaaigdacqGHRaWk daWcaaqaaiaadkgadaahaaWcbeqaaiaaiodaaaaakeaacaaIYaGaam OuamaaCaaaleqabaGaaG4maaaaaaaakiaawIcacaGLPaaacaaMc8oa aa@52AE@

 

2. Find a self-equilibrating residual stress field, which satisfies traction free boundary conditions on R=a, R=b, and which can be added to the elastic stresses to prevent yield in the sphere.  The equilibrium equation for the residual stress can be written

d ρ RR dR + 1 R 2 ρ RR ρ θθ ρ ϕϕ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqyWdi3aaSbaaS qaaiaadkfacaWGsbaabeaaaOqaaiaadsgacaWGsbaaaiabgUcaRmaa laaabaGaaGymaaqaaiaadkfaaaWaaeWaaeaacaaIYaGaeqyWdi3aaS baaSqaaiaadkfacaWGsbaabeaakiabgkHiTiabeg8aYnaaBaaaleaa cqaH4oqCcqaH4oqCaeqaaOGaeyOeI0IaeqyWdi3aaSbaaSqaaiabew 9aMjabew9aMbqabaaakiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@4E2C@

We can satisfy this equation by choosing any suitable distribution for ρ RR MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaadkfacaWGsb aabeaaaaa@347A@  and calculating the corresponding ρ θθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaaaaa@3638@ .  For example, we can choose ρ RR = ρ 0 (1a/R)(1b/R) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaadkfacaWGsb aabeaakiabg2da9iabeg8aYnaaBaaaleaacaaIWaaabeaakiaacIca caaIXaGaeyOeI0Iaamyyaiaac+cacaWGsbGaaiykaiaacIcacaaIXa GaeyOeI0IaamOyaiaac+cacaWGsbGaaiykaaaa@431D@ , which corresponds to ρ θθ = ρ 0 (1(b+a)/2R) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGH9aqpcqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaGG OaGaaGymaiabgkHiTiaacIcacaWGIbGaey4kaSIaamyyaiaacMcaca GGVaGaaGOmaiaadkfacaGGPaaaaa@4347@ .  To avoid yield at maximum load, we must ensure that σ RR σ θθ + ρ RR ρ θθ Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacqaHdpWCdaWgaaWcbaGaam OuaiaadkfaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiabeI7aXjab eI7aXbqabaGccqGHRaWkcqaHbpGCdaWgaaWcbaGaamOuaiaadkfaae qaaOGaeyOeI0IaeqyWdi3aaSbaaSqaaiabeI7aXjabeI7aXbqabaaa kiaawEa7caGLiWoacqGHKjYOcaWGzbaaaa@4B63@ , while to avoid yield at zero load, ρ RR ρ θθ Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacqaHbpGCdaWgaaWcbaGaam OuaiaadkfaaeqaaOGaeyOeI0IaeqyWdi3aaSbaaSqaaiabeI7aXjab eI7aXbqabaaakiaawEa7caGLiWoacqGHKjYOcaWGzbaaaa@4088@  throughout the shell.   The critically stressed material element lies at R=a at both the maximum and zero loads, which shows that

3 p a b 3 ( b 3 a 3 ) + ρ 0 (ba) 2a <YY< ρ 0 (ba) 2a <Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaaIZaGaamiCamaaBaaale aacaWGHbaabeaakiaadkgadaahaaWcbeqaaiaaiodaaaaakeaacaGG OaGaamOyamaaCaaaleqabaGaaG4maaaakiabgkHiTiaadggadaahaa WcbeqaaiaaiodaaaGccaGGPaaaaiabgUcaRiabeg8aYnaaBaaaleaa caaIWaaabeaakmaalaaabaGaaiikaiaadkgacqGHsislcaWGHbGaai ykaaqaaiaaikdacaWGHbaaaiabgYda8iaadMfacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaeyOeI0IaamywaiabgYda8iabeg8aYnaaBaaaleaacaaIWaaabe aakmaalaaabaGaaiikaiaadkgacqGHsislcaWGHbGaaiykaaqaaiaa ikdacaWGHbaaaiabgYda8iaadMfaaaa@7143@

Clearly, the best choice of ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@  is ρ 0 =2Ya/(ba) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0JaeyOeI0IaaGOmaiaadMfacaWGHbGaai4laiaacIcacaWG IbGaeyOeI0IaamyyaiaacMcaaaa@3CC9@

 

The estimate for the shakedown limit therefore follows as p a /Y<4(1 a 3 / b 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyipaWJaaGinaiaacIcacaaIXaGaeyOeI0Iaamyy amaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaaca aIZaaaaOGaaiykaiaac+cacaaIZaaaaa@3F1D@ .  This is equal to the exact solution derived (with considerably more effort) in Section 6.1.4.

 

 

 

6.3.9 The Upper Bound Shakedown Theorem

 

In this section we derive a theorem that can be used to obtain an over-estimate to the maximum cyclic load that can be applied to a structure without inducing cyclic plastic deformation.  Although the estimate is inherently unsafe, the theorem is easier to use than the lower bound theorem.

 

We consider an elastic-perfectly plastic solid, sketched in the figure. The solid has Young’s modulus E, Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  and has a Von-Mises yield surface with uniaxial tensile yield stress Y, and an associated flow law. Assume that

 

1. The displacement u=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaahcdaaaa@339D@  on part of the boundary of the solid 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@

 

2. The remainder of the boundary  2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  is subjected to a prescribed cycle of traction t * (t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiDamaaCaaaleqabaGaaiOkaaaaki aacIcacaWG0bGaaiykaaaa@3514@ .   The history of traction is periodic, with a period T.

 

 

 

Define the following quantities:

 

1. Let [ u i , ε ij , σ ij ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaWgaaWcbaGaamyAaa qabaGccaGGSaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiaa cYcacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiyxaaaa@3DAE@  denote the actual history of displacement, strain and stress induced in the solid by the applied loading.  The strain is partitioned into elastic and plastic parts as ε ij = ε ij e + ε ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaa dwgaaaGccqGHRaWkcqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaaca WGWbaaaaaa@3FCD@

 

2. Let [ u i ε , ε ij ε , σ ij ε ] MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4waiaadwhadaqhaaWcbaGaamyAaa qaaiabew7aLbaakiaacYcacqaH1oqzdaqhaaWcbaGaamyAaiaadQga aeaacqaH1oqzaaGccaGGSaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaeqyTdugaaOGaaiyxaaaa@42A6@  denote the history of displacement, strain and stress induced by the prescribed traction in a perfectly elastic solid with identical geometry.

 

 

To apply the upper bound theorem, we guess a mechanism of cyclic plasticity that might occur in the structure under the applied loading.  We denote the cycle of strain by ε ˙ ^ ij p (t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiGbaKaadaqhaaWcbaGaam yAaiaadQgaaeaacaWGWbaaaOGaaiikaiaadshacaGGPaaaaa@37FA@ , and define the change in strain per cycle as

Δ ε ^ ij p = 0 T ε ˙ ^ ij p (t)dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKafqyTduMbaKaadaqhaaWcba GaamyAaiaadQgaaeaacaWGWbaaaOGaeyypa0Zaa8qCaeaacuaH1oqz gaGagaqcamaaDaaaleaacaWGPbGaamOAaaqaaiaadchaaaGccaGGOa GaamiDaiaacMcacaWGKbGaamiDaaWcbaGaaGimaaqaaiaadsfaa0Ga ey4kIipaaaa@4504@

To be a kinematically admissible cycle,

 

· Δ ε ^ ij p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKafqyTduMbaKaadaqhaaWcba GaamyAaiaadQgaaeaacaWGWbaaaaaa@36FC@  must be compatible, i.e. Δ ε ^ ij p =(Δ u ^ i / x j +Δ u ^ j / x i )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKafqyTduMbaKaadaqhaaWcba GaamyAaiaadQgaaeaacaWGWbaaaOGaeyypa0JaaiikaiabgkGi2kab fs5aejqadwhagaqcamaaBaaaleaacaWGPbaabeaakiaac+cacqGHci ITcaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaeyOaIyRaeuiL dqKabmyDayaajaWaaSbaaSqaaiaadQgaaeqaaOGaai4laiabgkGi2k aadIhadaWgaaWcbaGaamyAaaqabaGccaGGPaGaai4laiaaikdaaaa@4E20@   for some a displacement field Δ u ^ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKabmyDayaajaWaaSbaaSqaai aadMgaaeqaaaaa@346A@ .  Note that only the change in strain per cycle needs to be compatible, the plastic strain rate need not be compatible at every instant during the cycle.

 

· The compatible displacement field must satisfy Δ u ^ i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKabmyDayaajaWaaSbaaSqaai aadMgaaeqaaOGaeyypa0JaaGimaaaa@3634@  on 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@ .

 

 

The upper bound shakedown theorem can then be stated as follows.  If there exists any kinematically admissible cycle of strain that satisfies

0 T R σ ij ε (t) ε ˙ ^ ij p (t)dVdt 0 T R Y ε ˙ ^ e p (t)dVdt ε ˙ ^ e p = 2 ε ˙ ^ ij p ε ˙ ^ ij p /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8qCaeaadaWdrbqaaiabeo8aZnaaDa aaleaacaWGPbGaamOAaaqaaiabew7aLbaakiaacIcacaWG0bGaaiyk aiqbew7aLzaacyaajaWaa0baaSqaaiaadMgacaWGQbaabaGaamiCaa aakiaacIcacaWG0bGaaiykaiaadsgacaWGwbGaamizaiaadshaaSqa aiaadkfaaeqaniabgUIiYdaaleaacaaIWaaabaGaamivaaqdcqGHRi I8aOGaeyyzIm7aa8qCaeaadaWdrbqaaiaadMfacuaH1oqzgaGagaqc amaaDaaaleaacaWGLbaabaGaamiCaaaakiaacIcacaWG0bGaaiykai aadsgacaWGwbGaamizaiaadshaaSqaaiaadkfaaeqaniabgUIiYdaa leaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7cuaH1oqzgaGagaqcamaaDaaaleaa caWGLbaabaGaamiCaaaakiabg2da9maakaaabaGaaGOmaiqbew7aLz aacyaajaWaa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaakiqbew7a LzaacyaajaWaa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaakiaac+ cacaaIZaaaleqaaaaa@925E@

the solid will not shake down to an elastic state.

 

 

Proof: The upper bound theorem can be proved by contradiction. 

 

1. Suppose that the solid does shake down.  Then, from the lower bound shakedown theorem, we know that there exists a time independent residual stress field ρ ¯ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyWdiNbaebadaWgaaWcbaGaamyAai aadQgaaeqaaaaa@34C1@ , which satisfies equilibrium ρ ¯ ij / x j =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRafqyWdiNbaebadaWgaaWcba GaamyAaiaadQgaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGa amOAaaqabaGccqGH9aqpcaaIWaaaaa@3C2B@ ; the boundary conditions  ρ ¯ ij n j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyWdiNbaebadaWgaaWcbaGaamyAai aadQgaaeqaaOGaamOBamaaBaaaleaacaWGQbaabeaakiabg2da9iaa icdaaaa@38A3@  on  2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@ , and is such that σ ij ε (t)+ ρ ¯ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aa0baaSqaaiaadMgacaWGQb aabaGaeqyTdugaaOGaaiikaiaadshacaGGPaGaey4kaSIafqyWdiNb aebadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@3D73@  lies below yield throughout the cycle.

 

2. The principle of maximum plastic resistance then shows that

( σ ^ ij ( σ ij ε + ρ ¯ ij )) ε ˙ ^ ij p =Y ε ˙ ^ e p ( σ ij ε + ρ ¯ ij ) ε ˙ ^ ij p 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiqbeo8aZzaajaWaaSbaaSqaai aadMgacaWGQbaabeaakiabgkHiTiaacIcacqaHdpWCdaqhaaWcbaGa amyAaiaadQgaaeaacqaH1oqzaaGccqGHRaWkcuaHbpGCgaqeamaaBa aaleaacaWGPbGaamOAaaqabaGccaGGPaGaaiykaiqbew7aLzaacyaa jaWaa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaakiabg2da9iaadM facuaH1oqzgaGagaqcamaaDaaaleaacaWGLbaabaGaamiCaaaakiab gkHiTiaacIcacqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaacqaH1o qzaaGccqGHRaWkcuaHbpGCgaqeamaaBaaaleaacaWGPbGaamOAaaqa baGccaGGPaGafqyTduMbaiGbaKaadaqhaaWcbaGaamyAaiaadQgaae aacaWGWbaaaOGaeyyzImRaaGimaaaa@610A@ .

 

3. Integrating this expression over the volume of the solid, and the cycle of loading gives

0 T R Y ε ˙ ^ e p (t)dVdt 0 T R σ ij ε (t) ε ˙ ^ ij p (t)dVdt 0 T R ρ ¯ ij (t) ε ˙ ^ ij p (t)dVdt 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8qCaeaadaWdrbqaaiaadMfacuaH1o qzgaGagaqcamaaDaaaleaacaWGLbaabaGaamiCaaaakiaacIcacaWG 0bGaaiykaiaadsgacaWGwbGaamizaiaadshaaSqaaiaadkfaaeqani abgUIiYdaaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaeyOeI0Ya a8qCaeaadaWdrbqaaiabeo8aZnaaDaaaleaacaWGPbGaamOAaaqaai abew7aLbaakiaacIcacaWG0bGaaiykaiqbew7aLzaacyaajaWaa0ba aSqaaiaadMgacaWGQbaabaGaamiCaaaakiaacIcacaWG0bGaaiykai aadsgacaWGwbGaamizaiaadshaaSqaaiaadkfaaeqaniabgUIiYdaa leaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaeyOeI0Yaa8qCaeaada Wdrbqaaiqbeg8aYzaaraWaaSbaaSqaaiaadMgacaWGQbaabeaakiaa cIcacaWG0bGaaiykaiqbew7aLzaacyaajaWaa0baaSqaaiaadMgaca WGQbaabaGaamiCaaaakiaacIcacaWG0bGaaiykaiaadsgacaWGwbGa amizaiaadshaaSqaaiaadkfaaeqaniabgUIiYdaaleaacaaIWaaaba GaamivaaqdcqGHRiI8aOGaeyyzImRaaGimaaaa@78E7@

 

4. Finally, reversing the order of integration in the last integral and using the principle of virtual work, we see that

R 0 T ρ ¯ ij (t) ε ˙ ^ ij p (t)dtdV = R ρ ¯ ij Δ ε ^ ij p dV = R ρ ¯ ij n j Δ u i p dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaadaWdXbqaaiqbeg8aYzaara WaaSbaaSqaaiaadMgacaWGQbaabeaakiaacIcacaWG0bGaaiykaiqb ew7aLzaacyaajaWaa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaaki aacIcacaWG0bGaaiykaiaadsgacaWG0bGaamizaiaadAfaaSqaaiaa icdaaeaacaWGubaaniabgUIiYdaaleaacaWGsbaabeqdcqGHRiI8aO Gaeyypa0Zaa8quaeaacuaHbpGCgaqeamaaBaaaleaacaWGPbGaamOA aaqabaGccqqHuoarcuaH1oqzgaqcamaaDaaaleaacaWGPbGaamOAaa qaaiaadchaaaGccaWGKbGaamOvaaWcbaGaamOuaaqab0Gaey4kIipa kiabg2da9maapefabaGafqyWdiNbaebadaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaamOBamaaBaaaleaacaWGQbaabeaakiabfs5aejaadwha daqhaaWcbaGaamyAaaqaaiaadchaaaGccaWGKbGaamyqaaWcbaGaey OaIyRaamOuaaqab0Gaey4kIipakiabg2da9iaaicdaaaa@6C8D@

To see this, note that  Δ u ^ i =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKabmyDayaajaWaaSbaaSqaai aadMgaaeqaaOGaeyypa0JaaGimaaaa@3634@  on 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  while   ρ ¯ ij n j =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyWdiNbaebadaWgaaWcbaGaamyAai aadQgaaeqaaOGaamOBamaaBaaaleaacaWGQbaabeaakiabg2da9iaa icdaaaa@38A3@  on  2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@ .

 

5. Substituting this result back into (2) gives a contradiction, so proving the upper bound theorem.

 

 

 

6.3.10 Examples of applications of the upper bound shakedown theorem

 

Example 1: A simple 3 bar problem.  We re-visit the demonstration problem illustrated in Section 6.3.8.  Consider a structure made of three parallel elastic-plastic bars, with Young’s modulus E, length L, and cross sectional are A, as shown below.  The two bars labeled 1 and 2 have yield stress Y; the central bar (labeled 3) has yield stress 2Y.  The structure is subjected to a cyclic load with mean value P ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmiuayaaraaaaa@31CD@  and amplitude ΔP MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaamiuaaaa@331B@ .

 


 

To obtain an upper bound to the shakedown limit, we must devise a suitable mechanism of plastic flow in the solid.  We could consider three possible mechanisms:

 

1. An increment of plastic strain d ε 22 p =dε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaaIYa GaaGOmaaqaaiaadchaaaGccqGH9aqpcaWGKbGaeqyTdugaaa@39AA@  in bars (1) and (2) at the instant of maximum load, followed by d ε 22 p =dε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaaIYa GaaGOmaaqaaiaadchaaaGccqGH9aqpcqGHsislcaWGKbGaeqyTduga aa@3A97@  in bars (1) and (2) at the instant of minimum load.  Since the strain at the end of the cycle vanishes, it is automatically compatible.

 

2. An equal increment of plastic strain d ε 22 p =dε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaDaaaleaacaaIYa GaaGOmaaqaaiaadchaaaGccqGH9aqpcaWGKbGaeqyTdugaaa@39AA@  in all three bars at each instant of maximum load

 

 

3. An equal increment of plastic strain d ε 22 p =dε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0Iaamizaiabew7aLnaaDaaale aacaaIYaGaaGOmaaqaaiaadchaaaGccqGH9aqpcaWGKbGaeqyTduga aa@3A97@  at each instant of minimum load.

 

 

By finding the combination of loads for which

0 T R σ ij ε (t) ε ˙ ^ ij p (t)dVdt 0 T R Y ε ˙ ^ e p (t)dVdt ε ˙ ^ e p = 2 ε ˙ ^ ij p ε ˙ ^ ij p /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8qCaeaadaWdrbqaaiabeo8aZnaaDa aaleaacaWGPbGaamOAaaqaaiabew7aLbaakiaacIcacaWG0bGaaiyk aiqbew7aLzaacyaajaWaa0baaSqaaiaadMgacaWGQbaabaGaamiCaa aakiaacIcacaWG0bGaaiykaiaadsgacaWGwbGaamizaiaadshaaSqa aiaadkfaaeqaniabgUIiYdaaleaacaaIWaaabaGaamivaaqdcqGHRi I8aOGaeyyzIm7aa8qCaeaadaWdrbqaaiaadMfacuaH1oqzgaGagaqc amaaDaaaleaacaWGLbaabaGaamiCaaaakiaacIcacaWG0bGaaiykai aadsgacaWGwbGaamizaiaadshaaSqaaiaadkfaaeqaniabgUIiYdaa leaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7cuaH1oqzgaGagaqcamaaDaaaleaa caWGLbaabaGaamiCaaaakiabg2da9maakaaabaGaaGOmaiqbew7aLz aacyaajaWaa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaakiqbew7a LzaacyaajaWaa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaakiaac+ cacaaIZaaaleqaaaaa@925E@

we obtain conditions where shakedown is guaranteed not to occur. Note that the elastic stresses in all three bars are equal, and are given by σ 22 =P(t)/3A MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9iaadcfacaGGOaGaamiDaiaacMcacaGGVaGaaG4m aiaadgeaaaa@3AB4@ . Thus

 

1. For mechanism (1):

2( P ¯ +ΔP)Ldε/32( P ¯ ΔP)Ldε/32YLAdε+2YLAdεΔP3AY MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGOmaiaacIcaceWGqbGbaebacqGHRa WkcqqHuoarcaWGqbGaaiykaiaadYeacaWGKbGaeqyTduMaai4laiaa iodacqGHsislcaaIYaGaaiikaiqadcfagaqeaiabgkHiTiabfs5aej aadcfacaGGPaGaamitaiaadsgacqaH1oqzcaGGVaGaaG4maiabgwMi ZkaaikdacaWGzbGaamitaiaadgeacaWGKbGaeqyTduMaey4kaSIaaG OmaiaadMfacaWGmbGaamyqaiaadsgacqaH1oqzcqGHshI3cqqHuoar caWGqbGaeyyzImRaaG4maiaadgeacaWGzbaaaa@5EA1@

 

2. For mechanism (2):

( P ¯ +ΔP)Ldε4YLAdε P ¯ +ΔP4AY MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiqadcfagaqeaiabgUcaRiabfs 5aejaadcfacaGGPaGaamitaiaadsgacqaH1oqzcqGHLjYScaaI0aGa amywaiaadYeacaWGbbGaamizaiabew7aLjabgkDiElqadcfagaqeai abgUcaRiabfs5aejaadcfacqGHLjYScaaI0aGaamyqaiaadMfaaaa@4BBC@

 

3. For mechanism (3):

( P ¯ ΔP)Ldε4YLAdε P ¯ ΔP4AY MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0Iaaiikaiqadcfagaqeaiabgk HiTiabfs5aejaadcfacaGGPaGaamitaiaadsgacqaH1oqzcqGHLjYS caaI0aGaamywaiaadYeacaWGbbGaamizaiabew7aLjabgkDiElqadc fagaqeaiabgkHiTiabfs5aejaadcfacqGHKjYOcqGHsislcaaI0aGa amyqaiaadMfaaaa@4D9B@

 

These agree with the lower bound calculated in Section 6.3.8, and are therefore the exact solution.

 

 

Example 2: Shakedown limit for a pressurized spherical shell.  We consider an elastic-perfectly plastic thick-walled shell, with inner radius a and outer radius b.  The inner wall of the shell is subjected to a cyclic pressure, with minimum value zero, and maximum value p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@ , as sketched in the figure.

 

To estimate the shakedown limit we must

 

1. Calculate the stresses induced by the pressure in an elastic shell.  The solution can be found in Section 4.1.4. 

σ RR = p a a 3 b 3 a 3 1 b 3 R 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkfacaWGsb aabeaakiabg2da9maalaaabaGaamiCamaaBaaaleaacaWGHbaabeaa kiaadggadaahaaWcbeqaaiaaiodaaaaakeaadaqadaqaaiaadkgada ahaaWcbeqaaiaaiodaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaI ZaaaaaGccaGLOaGaayzkaaaaaiaaykW7daqadaqaaiaaigdacqGHsi sldaWcaaqaaiaadkgadaahaaWcbeqaaiaaiodaaaaakeaacaWGsbWa aWbaaSqabeaacaaIZaaaaaaaaOGaayjkaiaawMcaaiaaykW7aaa@49B0@   σ θθ = σ ϕϕ = p a a 3 b 3 a 3 1+ b 3 2 R 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI 7aXbqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaeqy1dyMaeqy1dyga beaakiabg2da9maalaaabaGaamiCamaaBaaaleaacaWGHbaabeaaki aadggadaahaaWcbeqaaiaaiodaaaaakeaadaqadaqaaiaadkgadaah aaWcbeqaaiaaiodaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIZa aaaaGccaGLOaGaayzkaaaaaiaaykW7daqadaqaaiaaigdacqGHRaWk daWcaaqaaiaadkgadaahaaWcbeqaaiaaiodaaaaakeaacaaIYaGaam OuamaaCaaaleqabaGaaG4maaaaaaaakiaawIcacaGLPaaacaaMc8oa aa@52AE@

 

2. Postulate a mechanism of steady-state plastic deformation in the shell.  For example, consider a mechanism consisting of a uniform plastic strain increment d ε rr =2dεd ε ϕϕ =d ε θθ =dε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaWGYb GaamOCaaqabaGccqGH9aqpcqGHsislcaaIYaGaamizaiabew7aLjaa ykW7caaMc8UaaGPaVlaaykW7caWGKbGaeqyTdu2aaSbaaSqaaiabew 9aMjabew9aMbqabaGccqGH9aqpcaWGKbGaeqyTdu2aaSbaaSqaaiab eI7aXjabeI7aXbqabaGccqGH9aqpcaWGKbGaeqyTduMaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8oaaa@5B65@  which occurs in a spherical shell with radius a very small thickness dt at the instant of maximum pressure, followed by a strain d ε rr =2dεd ε ϕϕ =d ε θθ =dε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabew7aLnaaBaaaleaacaWGYb GaamOCaaqabaGccqGH9aqpcaaIYaGaamizaiabew7aLjaaykW7caaM c8UaaGPaVlaaykW7caWGKbGaeqyTdu2aaSbaaSqaaiabew9aMjabew 9aMbqabaGccqGH9aqpcaWGKbGaeqyTdu2aaSbaaSqaaiabeI7aXjab eI7aXbqabaGccqGH9aqpcqGHsislcaWGKbGaeqyTduMaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8oaaa@5B65@  at the instant of minimum load.

 

3. The upper bound theorem states that shakedown will not occur if

0 T R σ ij ε (t) ε ˙ ^ ij p (t)dVdt 0 T R Y ε ˙ ^ e p (t)dVdt ε ˙ ^ e p = 2 ε ˙ ^ ij p ε ˙ ^ ij p /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8qCaeaadaWdrbqaaiabeo8aZnaaDa aaleaacaWGPbGaamOAaaqaaiabew7aLbaakiaacIcacaWG0bGaaiyk aiqbew7aLzaacyaajaWaa0baaSqaaiaadMgacaWGQbaabaGaamiCaa aakiaacIcacaWG0bGaaiykaiaadsgacaWGwbGaamizaiaadshaaSqa aiaadkfaaeqaniabgUIiYdaaleaacaaIWaaabaGaamivaaqdcqGHRi I8aOGaeyyzIm7aa8qCaeaadaWdrbqaaiaadMfacuaH1oqzgaGagaqc amaaDaaaleaacaWGLbaabaGaamiCaaaakiaacIcacaWG0bGaaiykai aadsgacaWGwbGaamizaiaadshaaSqaaiaadkfaaeqaniabgUIiYdaa leaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7cuaH1oqzgaGagaqcamaaDaaaleaa caWGLbaabaGaamiCaaaakiabg2da9maakaaabaGaaGOmaiqbew7aLz aacyaajaWaa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaakiqbew7a LzaacyaajaWaa0baaSqaaiaadMgacaWGQbaabaGaamiCaaaakiaac+ cacaaIZaaaleqaaaaa@925E@

Substituting the elastic stress field and the strain rate shows that

4π a 2 t 3 p a b 3 ( b 3 a 3 ) dε4π a 2 tY2dε+4π a 2 tY2dε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGinaiabec8aWjaadggadaahaaWcbe qaaiaaikdaaaGccaWG0bWaaSaaaeaacaaIZaGaamiCamaaBaaaleaa caWGHbaabeaakiaadkgadaahaaWcbeqaaiaaiodaaaaakeaacaGGOa GaamOyamaaCaaaleqabaGaaG4maaaakiabgkHiTiaadggadaahaaWc beqaaiaaiodaaaGccaGGPaaaaiaadsgacqaH1oqzcqGHLjYScaaI0a GaeqiWdaNaamyyamaaCaaaleqabaGaaGOmaaaakiaadshacaWGzbGa aGOmaiaadsgacqaH1oqzcqGHRaWkcaaI0aGaeqiWdaNaamyyamaaCa aaleqabaGaaGOmaaaakiaadshacaWGzbGaaGOmaiaadsgacqaH1oqz aaa@5907@

This gives p a /Y<4(1 a 3 / b 3 )/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaki aac+cacaWGzbGaeyipaWJaaGinaiaacIcacaaIXaGaeyOeI0Iaamyy amaaCaaaleqabaGaaG4maaaakiaac+cacaWGIbWaaWbaaSqabeaaca aIZaaaaOGaaiykaiaac+cacaaIZaaaaa@3F1D@  for the shakedown limit.  Again, this agrees with the lower bound, and is therefore the exact solution.