2.7 Transformation of kinematic and kinetic variables under changes of reference frame

 

In this section we discuss how the vectors and tensors we use in solid mechancis change when we change our coordinate system and the reference configuration that is used to describe shape changes.   This seems a rather abstract and obscure topic for practical purposes.  It becomes important,  when we construct constitutive equations that relate deformation measures (usually one set of tensors) to stresses (another set of tensors).   The constitutive equatinons must behave correctly in all possible choices of coordinate system.

 

This is a difficult concept that requires a more abstract understanding of the mathematical machinery that we use to describe the behavior of deformable solids.   We need to start by understanding what is meant by a ‘reference frame,’ and then work out how our vectors and tensors transform between two particular choices of reference frame.  These relations will be used to ensure that stress-strain relations satisfy the principle of material frame indifference.

 

We start by introducing the concept of the Newtonian ‘inertial frame.’   This is particular choice of coordinate system that describes position in space, in which particle motion and forces (defined in classical mechanics by comparing them to gravity) are observed experimentally to obey Newton’s three laws of motion.   We describe the position of each point in this frame by a triad of real numbers r, and choose to define the distance between any two points as the dot product d= r 1 r 2 r 1 r 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabg2da9maakaaabaWaaeWaae aacaWHYbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCOCamaaBaaa leaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgwSixpaabmaabaGaaC OCamaaBaaaleaacaaIXaaabeaakiabgkHiTiaahkhadaWgaaWcbaGa aGOmaaqabaaakiaawIcacaGLPaaaaSqabaaaaa@41D2@ .   Mathematically, this defines a Euclidean vector space.   Of course the choice of three real numbers r characterizing position is not unique, but we can generate all possible inertial frames by a length preserving mapping of the form

r ^ = v 0 t+Q(r r 0 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOCayaajaGaeyypa0JaaCODamaaBa aaleaacaaIWaaabeaakiaadshacqGHRaWkcaWHrbGaaiikaiaahkha cqGHsislcaWHYbWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaaa@3CC1@

Here r ^ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOCayaajaaaaa@31EB@  is a new triad of real numbers; v 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODamaaBaaaleaacaaIWaaabeaaaa a@32C5@  is a constant vector (another triad of real numbers), t is time, r 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCamaaBaaaleaacaaIWaaabeaaaa a@32C1@  is an arbitrary point in space (expressed in the first choice of frame), and Q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuaaaa@31BA@  is a time independent proper orthogonal tensor ( Q Q T =I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuaiaahgfadaahaaWcbeqaaiaads faaaGccqGH9aqpcaWHjbaaaa@357C@  and det(Q)=1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bGaaiikaiaahg facaGGPaGaeyypa0JaaGymaaaa@379F@  ).  It is worth pausing to interpret this equation carefully MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  it looks like a deformation being applied to a solid, but it actually represents a change of coordinates MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  we are assigning a different set of numbers to each point in space.

 

To complicate things further, in classical mechanics we also frequently make use of frames that are not inertial.   You have done this when analyzing particle motion using cylindrical polar or spherical-polar basis vectors, for example.  The family of all possible non-inertial frames is generated by a time dependent mapping

r * = r 0 * (t)+Q(t)(r r 0 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCamaaCaaaleqabaGaaiOkaaaaki abg2da9iaahkhadaqhaaWcbaGaaGimaaqaaiaacQcaaaGccaGGOaGa amiDaiaacMcacqGHRaWkcaWHrbGaaiikaiaadshacaGGPaGaaiikai aahkhacqGHsislcaWHYbWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaaa @41EC@

Here, r 0 * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCamaaDaaaleaacaaIWaaabaGaai Okaaaaaaa@3370@  and Q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuaaaa@31BA@  are (as before) a vector and a proper orthoganal tensor, but they are now time dependent.   Points in physical space are still identified by a triad of real numbers r * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCamaaCaaaleqabaGaaiOkaaaaaa a@32B6@ , and the distance between two points is still defined by the same dot product d= r * r * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabg2da9maakaaabaGaaCOCam aaCaaaleqabaGaaiOkaaaakiabgwSixlaahkhadaahaaWcbeqaaiaa cQcaaaaabeaaaaa@38DF@ , but the real numbers associated with each point in the Newtonian frame now vary with time.   We can attach a physical significance to this mathematical transformation by noticing that this is how an observer who is rotating and translating relative to the Newtonian inertial frame might choose to describe the world.  

 

These mathematical transformations define what we mean by a ‘change of frame’ or a ‘change of observer’ in classical mechanics.   Any frame is a Euclidean vector space, so we can construct any arbitrary vector in these spaces as a linear combination of three non-parallel position vectors.   We can define a vector or tensor in one frame, and then map it to the other.  What this means in practice is that if we measure some vector quantity, we find a way to quantify its magnitude and direction by three real numbers (and their units!). For tensors we use 9 numbers. But this is meaningful only if we also specify the reference frame we are using for our vector, because the same vector will (usually, but not always) appear as a different set of numbers in the other frame.   How these two sets of numbers are related depends on how the vector is defined MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  so as we shall see shortly the change of frame is slightly more complicated than a simple change of coordinate system.   

 

For the purposes of discussing the concept of ‘material frame indifference’ we are interested in how vector and tensor quantities transform under a particular change of observer and reference configuration.  The reason for this is discussed in more detail in Section 3.1.  Our first observer chooses to use the inertial frame (one arbitrary choice from the family of possible inertial frames).   Our second observer chooses to use a frame that rotates and translates with respect to the inertial frame.

 


We also assume that both observers use the same time independent coordinates in their separate frames to specify the position of a material particle in the reference configuration for the solid.   The two reference configurations then have the same shape (because both coordinate systems are Euclidean vector spaces with identical definitions of ‘distance’).  Both observers also see a stationary reference configuration in their own frame. But if one observer could see the reference configuration that is used by the other, it would appear to be rotating and translating with respect to their frame (a rigid rotation).     This transformation of observers and reference configuration is illustrated in the figure 

 

This is perhaps the most difficult idea in this discussion, because we are accustomed to using some physical shape occupied by the solid (usually its unloaded configuration) as the reference configuration.    But this is not necessary.   The reference configuration is a purely mathematical way of assigning a coordinate X to each material particle in a solid.   Physical positions of these material particles in the inertial frame (i.e. what we actually observe) are specified by the deformation mapping y(X,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaiaacIcacaWHybGaaiilaiaads hacaGGPaaaaa@35C5@ .   We can describe exactly the same motion of the solid, including its initial position and orientation, using any Euclidean space for X MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  switching from one to the other will just change the mathematical functions of time and X that appear in our formulas for y.  In the same way, any equations relating stress to strain measure must predict the same behavior in the actual inertial frame regardless of the choice of X.

 

With this background, we will now derive how the vectors and tensors we use in continuum mechanics transform as a result of this simultaneous change in coordinates and reference configuration (we refer to this as a ‘change of reference frame’).  In the discussion to follow, we will use a bold faced symbol with no superscript to denote a vector (3 real numbers) in the inertial frame: position of a point in space is r MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCaaaa@31DB@ ; the position vector of a material particle is y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaaaa@31E2@ , Cauchy stress (9 numbers MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  with the necessary symmetry!) as σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Wdaaa@322F@ , and so on.    Vectors and tensors in the rotating observer’s frame will be denoted with a starred superscript r * , y * , σ * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOCamaaCaaaleqabaGaaiOkaaaaki aacYcacaWH5bWaaWbaaSqabeaacaGGQaaaaOGaaiilaiaaho8adaah aaWcbeqaaiaacQcaaaaaaa@3831@ , and so on.  These symbols just represent a second set of 3 or 9 numbers.

 

· Scalar quantities, such as density or temperature are always invariant MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  they have the same value in both the inertial frame and in the observer’s frame.

 

· Vector quantities that describe geometry or particle motion in the real world are always defined by measurements conducted in the inertial frame.  We specify the magnitude and direction of these vectors by representing them as a suitable combination of position vectors (a basis) in the inertial frame.  They can be regarded as connecting two fixed points in the inertial frame, and must transform with the line connecting these two points under a change of reference frame.  For example, a normal vector to a deformed surface, body force, velocity, acceleration vectors must transform as

n * =Qn b * =Qb v * =Qv a * =Qa MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOBamaaCaaaleqabaGaaiOkaaaaki abg2da9iaahgfacaWHUbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHIbWaaWbaaS qabeaacaGGQaaaaOGaeyypa0JaaCyuaiaahkgacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCODamaaCaaaleqabaGaai Okaaaakiabg2da9iaahgfacaWH2bGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaCyyamaaCaaaleqabaGaaiOkaaaakiabg2da9i aahgfacaWHHbGaaGPaVlaaykW7aaa@6BA8@

Vectors that transform in this way are said to be frame indifferent, or objective. This is a rather unfortunate terminology because it sounds like the coordinates themselves don’t change.  It really means the opposite MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  the coordinates must change so that all observers must describe in a consistent way some vector valued quantity that is measured in the inertial frame (which in a Newtonian universe is the only frame in which physical laws hold). 

 

· Similarly, tensor quantities that map a frame indifferent vector onto another frame indifferent vector are similarly said to be frame indifferent, or objective. Examples include the stretch rate tensor (which relates the relative velocity of two ends of an infinitesimal material fiber in the spatial configuration); or Cauchy stress (which maps the normal to a surface in the spatial configuration to the physical traction vector.  As we shall see with specific examples listed below frame indifferent tensors must transform as

σ * =Qσ Q T D * =QD Q T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4WdmaaCaaaleqabaGaaiOkaaaaki abg2da9iaahgfacaWHdpGaaCyuamaaCaaaleqabaGaamivaaaakiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaCiramaaCaaaleqabaGaaiOkaaaakiabg2da 9iaahgfacaWHebGaaCyuamaaCaaaleqabaGaamivaaaaaaa@4F65@

 

· The special vectors and tensors that happen to be frame indifferent have the following feature.   Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  be an inertial basis (three linearly independent vectors in the inertial frame).   In the observer’s reference frame these vectors transform to a time-dependent triad { e 1 * , e 2 * , e 3 * }={Q e 1 ,Q e 2 ,Q e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaqhaaWcbaGaaGymaa qaaiaacQcaaaGccaGGSaGaaCyzamaaDaaaleaacaaIYaaabaGaaiOk aaaakiaacYcacaWHLbWaa0baaSqaaiaaiodaaeaacaGGQaaaaOGaai yFaiabg2da9iaacUhacaWHrbGaaCyzamaaBaaaleaacaaIXaaabeaa kiaacYcacaWHrbGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcaca WHrbGaaCyzamaaBaaaleaacaaIZaaabeaakiaac2haaaa@4880@ . Now, we can compute components of a frame indifferent vector or tensor in either basis

b i * = e i * b * =Q e i Qb= e i Q T Qb= e i b= b i σ ij * = e i * σ * e j * =Q e i Qσ Q T Q e j = e i σ e j = σ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGIbWaa0baaSqaaiaadMgaae aacaGGQaaaaOGaeyypa0JaaCyzamaaDaaaleaacaWGPbaabaGaaiOk aaaakiabgwSixlaahkgadaahaaWcbeqaaiaacQcaaaGccqGH9aqpca WHrbGaaCyzamaaBaaaleaacaWGPbaabeaakiabgwSixlaahgfacaWH IbGaeyypa0JaaCyzamaaBaaaleaacaWGPbaabeaakiabgwSixlaahg fadaahaaWcbeqaaiaadsfaaaGccaWHrbGaaGPaVlaahkgacqGH9aqp caWHLbWaaSbaaSqaaiaadMgaaeqaaOGaeyyXICTaaCOyaiabg2da9i aadkgadaWgaaWcbaGaamyAaaqabaaakeaacaaMc8Uaeq4Wdm3aa0ba aSqaaiaadMgacaWGQbaabaGaaiOkaaaakiabg2da9iaahwgadaqhaa WcbaGaamyAaaqaaiaacQcaaaGccaWHdpWaaWbaaSqabeaacaGGQaaa aOGaaCyzamaaDaaaleaacaWGQbaabaGaaiOkaaaakiabg2da9iaahg facaWHLbWaaSbaaSqaaiaadMgaaeqaaOGaaCyuaiaaho8acaWHrbWa aWbaaSqabeaacaWGubaaaOGaaCyuaiaahwgadaWgaaWcbaGaamOAaa qabaGccqGH9aqpcaWHLbWaaSbaaSqaaiaadMgaaeqaaOGaaC4Wdiaa hwgadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaaaaaa@7C87@

Thus, the components of a frame indifferent vector or tensor in a basis that rotates with the inertial frame are independent of the observer.  This is why they are called ‘frame indifferent.’

 

· Not all vectors and tensors are frame indifferent.   For example, the position vector of material particles in the reference configuration satisfies (by definition): X * =X MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiwamaaCaaaleqabaGaaiOkaaaaki abg2da9iaahIfaaaa@348D@ . Vectors of this form are said to be invariant MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  they have the same coordinates in all reference frames. This is a matter of choice.   It may seem a bit odd, because we usually use the initial configuration of a solid as the reference, which suggests that the reference configuration has to occupy a fixed region in the inertial frame.   This is not the case, however.   The reference configuration is a purely mathematical entity that we use to quantify changes in length and relative orientation of lines that connect material particles in a solid.   We can do this by assigning each material particle a position in any Euclidean vector space with the same metric as the inertial frame.    We can, for example, specify the reference configuration as follows: (i) choose the initial configuration of the solid; (ii) measure the position X of each material particle in the inertial frame (this is a set of real numbers); and (iii) take the reference configuration to be the region defined by this set of real numbers in the rotating observer’s frame.   This appears to rotate the reference configuration, but of course it does not change its shape.  The behavior of the solid obviously has to be unchanged a shape preserving change of reference configuration.   Of course, we would be unlikely to use the reference configuration in the rotating observer’s frame in any actual calculation MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  it makes much more sense to use the initial configuration in the inertial frame as reference, and we have assumed that this is the case in the whole of the rest of this text.    We are abandoning this assumption here because it tells us something interesting about constitutive equations, as discussed further in Chapter 3.

 

· This choice of reference configuration means that any tensor that maps a vector from the reference frame onto another vector in the reference frame is also invariant.  So for example we can show that the Lagrange strain tensor and the right stretch tensor satisfy

E * =E U * =U MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyramaaCaaaleqabaGaaiOkaaaaki abg2da9iaahweacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaCyvamaaCaaaleqabaGaaiOkaaaakiabg2da9iaahwfaaa a@42DB@

 

 

 

With this preamble, we now proceed to derive how various quantities used in continuum mechanics will transform with this simultaneous change in reference configuration and reference frame.

 

· The deformation mapping y(X,t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEaiaacIcacaWHybGaaiilaiaads hacaGGPaaaaa@35C5@  that describes motion of each material particle in the reference configuraiton in space transforms as

y * (X,t)= r 0 * (t)+Q(t) y(X,t) r 0 = r 0 * (t)+Q(t) y( X * ,t) r 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEamaaCaaaleqabaGaaiOkaaaaki aacIcacaWHybGaaiilaiaadshacaGGPaGaeyypa0JaaCOCamaaDaaa leaacaaIWaaabaGaaiOkaaaakiaacIcacaWG0bGaaiykaiabgUcaRi aahgfacaGGOaGaamiDaiaacMcadaqadaqaaiaahMhacaGGOaGaaCiw aiaacYcacaWG0bGaaiykaiabgkHiTiaahkhadaWgaaWcbaGaaGimaa qabaaakiaawIcacaGLPaaacqGH9aqpcaWHYbWaa0baaSqaaiaaicda aeaacaGGQaaaaOGaaiikaiaadshacaGGPaGaey4kaSIaaCyuaiaacI cacaWG0bGaaiykamaabmaabaGaaCyEaiaacIcacaWHybWaaWbaaSqa beaacaGGQaaaaOGaaiilaiaadshacaGGPaGaeyOeI0IaaCOCamaaBa aaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaaa@5E1B@

(recall that X= X * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiwaiabg2da9iaahIfadaahaaWcbe qaaiaacQcaaaaaaa@3483@  )

 

· Take the time derivatives to see that velocity and acceleration vectors satisfy

v * =Qv=Q dy dt =Q d dt Q T ( y * y 0 * (t) = d y * dt d y 0 * dt Ω( y * y 0 * (t)) a * =Qa=Q d 2 y d t 2 =Q d 2 d t 2 Q T ( y * y 0 * (t)) = d 2 y * d t 2 d 2 y 0 * d t 2 + Ω 2 dΩ dt ( y * y 0 * (t))2Ω( d y * dt d y 0 * (t) dt ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWH2bWaaWbaaSqabeaacaGGQa aaaOGaeyypa0JaaCyuaiaahAhacqGH9aqpcaWHrbWaaSaaaeaacaWG KbGaaCyEaaqaaiaadsgacaWG0baaaiabg2da9iaahgfadaWcaaqaai aadsgaaeaacaWGKbGaamiDaaaadaGadaqaaiaahgfadaahaaWcbeqa aiaadsfaaaGccaGGOaGaaCyEamaaCaaaleqabaGaaiOkaaaakiabgk HiTiaahMhadaqhaaWcbaGaaGimaaqaaiaacQcaaaGccaGGOaGaamiD aiaacMcaaiaawUhacaGL9baacqGH9aqpdaWcaaqaaiaadsgacaWH5b WaaWbaaSqabeaacaGGQaaaaaGcbaGaamizaiaadshaaaGaeyOeI0Ya aSaaaeaacaWGKbGaaCyEamaaDaaaleaacaaIWaaabaGaaiOkaaaaaO qaaiaadsgacaWG0baaaiabgkHiTiaahM6acaGGOaGaaCyEamaaCaaa leqabaGaaiOkaaaakiabgkHiTiaahMhadaqhaaWcbaGaaGimaaqaai aacQcaaaGccaGGOaGaamiDaiaacMcacaGGPaaabaGaaCyyamaaCaaa leqabaGaaiOkaaaakiabg2da9iaahgfacaWHHbGaeyypa0JaaCyuam aalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaahMhaaeaacaWG KbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaWHrbWaaS aaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamizaiaadsha daahaaWcbeqaaiaaikdaaaaaaOWaaiWaaeaacaWHrbWaaWbaaSqabe aacaWGubaaaOGaaiikaiaahMhadaahaaWcbeqaaiaacQcaaaGccqGH sislcaWH5bWaa0baaSqaaiaaicdaaeaacaGGQaaaaOGaaiikaiaads hacaGGPaGaaiykaaGaay5Eaiaaw2haaaqaaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpdaWcaaqaaiaadsgada ahaaWcbeqaaiaaikdaaaGccaWH5bWaaWbaaSqabeaacaGGQaaaaaGc baGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0YaaS aaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaaCyEamaaDaaaleaa caaIWaaabaGaaiOkaaaaaOqaaiaadsgacaWG0bWaaWbaaSqabeaaca aIYaaaaaaakiabgUcaRmaabmaabaGaaCyQdmaaCaaaleqabaGaaGOm aaaakiabgkHiTmaalaaabaGaamizaiaahM6aaeaacaWGKbGaamiDaa aaaiaawIcacaGLPaaacaGGOaGaaCyEamaaCaaaleqabaGaaiOkaaaa kiabgkHiTiaahMhadaqhaaWcbaGaaGimaaqaaiaacQcaaaGccaGGOa GaamiDaiaacMcacaGGPaGaeyOeI0IaaGOmaiaahM6acaGGOaWaaSaa aeaacaWGKbGaaCyEamaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgaca WG0baaaiabgkHiTmaalaaabaGaamizaiaahMhadaqhaaWcbaGaaGim aaqaaiaacQcaaaGccaGGOaGaamiDaiaacMcaaeaacaWGKbGaamiDaa aacaGGPaaaaaa@C36A@

where

Ω= dQ dt Q T =Q d Q T dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyQdiabg2da9maalaaabaGaamizai aahgfaaeaacaWGKbGaamiDaaaacaWHrbWaaWbaaSqabeaacaWGubaa aOGaeyypa0JaeyOeI0IaaCyuamaalaaabaGaamizaiaahgfadaahaa WcbeqaaiaadsfaaaaakeaacaWGKbGaamiDaaaaaaa@404C@

is the spin tensor associated with the rotating observer frame. The additional terms in the acceleration involving Ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyQdaaa@3215@  represent the centripetal and coriolis accelerations associated with this rotation.  You will sometimes see statements in the literature that ‘acceleration vectors are not frame indifferent.’   Actually, they are frame indifferent (according to the definition used here) because they transform to the new frame as a * =Qa MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyamaaCaaaleqabaGaaiOkaaaaki abg2da9iaahgfacaWHHbaaaa@3579@ . What these statements are really saying is that in a non-inertial frame a * d 2 y * /d t 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyamaaCaaaleqabaGaaiOkaaaaki abgcMi5kaadsgadaahaaWcbeqaaiaaikdaaaGccaWH5bWaaWbaaSqa beaacaGGQaaaaOGaai4laiaadsgacaWG0bWaaWbaaSqabeaacaaIYa aaaaaa@3BB7@ .  There is no difficulty analyzing motion in the inertial frame using a second non-inertial rotating frame, provided we use the correct formulas relating a * , y * ,Ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyyamaaCaaaleqabaGaaiOkaaaaki aacYcacaWH5bWaaWbaaSqabeaacaGGQaaaaOGaaiilaiaahM6aaaa@372B@ .   We do this without a second’s thought when we analyze particle motion using cylindrical polar coordinates in our intro mechanics courses.

 

· The displacement of a particle from its position in the reference configuration to its position in the deformed solid is u=y(X,t)X MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiabg2da9iaahMhacaGGOaGaaC iwaiaacYcacaWG0bGaaiykaiabgkHiTiaahIfaaaa@3997@  in the inertial frame.   This transforms to

u * (X,t)= r 0 * (t)+Q(t) y(X,t) r 0 X= r 0 * (t)+Q(t) y( X * ,t) r 0 X * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiOkaaaaki aacIcacaWHybGaaiilaiaadshacaGGPaGaeyypa0JaaCOCamaaDaaa leaacaaIWaaabaGaaiOkaaaakiaacIcacaWG0bGaaiykaiabgUcaRi aahgfacaGGOaGaamiDaiaacMcadaqadaqaaiaahMhacaGGOaGaaCiw aiaacYcacaWG0bGaaiykaiabgkHiTiaahkhadaWgaaWcbaGaaGimaa qabaaakiaawIcacaGLPaaacqGHsislcaWHybGaeyypa0JaaCOCamaa DaaaleaacaaIWaaabaGaaiOkaaaakiaacIcacaWG0bGaaiykaiabgU caRiaahgfacaGGOaGaamiDaiaacMcadaqadaqaaiaahMhacaGGOaGa aCiwamaaCaaaleqabaGaaiOkaaaakiaacYcacaWG0bGaaiykaiabgk HiTiaahkhadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaacqGH sislcaWHybWaaWbaaSqabeaacaGGQaaaaaaa@628E@

 in the rotating observer frame.  But this measure of displacement is not a very useful quantity (it is clearly not frame indifferent). It is better to measure the displacement of a material particle from its initial position.  This is

u(X)=y(X,t)y(X,0). MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiaacIcacaWHybGaaiykaiabg2 da9iaahMhacaGGOaGaaCiwaiaacYcacaWG0bGaaiykaiabgkHiTiaa hMhacaGGOaGaaCiwaiaacYcacaaIWaGaaiykaiaac6caaaa@4048@

This displacement vector evidently transforms as u * =Qu MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiOkaaaaki abg2da9iaahgfacaWH1baaaa@35A1@  and is frame indifferent.

 

· Differentiate the deformation mapping and recall that X= X * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiwaiabg2da9iaahIfadaahaaWcbe qaaiaacQcaaaaaaa@3483@  to see that the deformation gradient transforms as

F * = y * X * =Q y X =QF MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOramaaCaaaleqabaGaaiOkaaaaki abg2da9maalaaabaGaeyOaIyRaaCyEamaaCaaaleqabaGaaiOkaaaa aOqaaiabgkGi2kaahIfadaahaaWcbeqaaiaacQcaaaaaaOGaeyypa0 JaaCyuamaalaaabaGaeyOaIyRaaCyEaaqaaiabgkGi2kaahIfaaaGa eyypa0JaaCyuaiaahAeaaaa@4371@

 

· The Jacobian of the deformation gradient is frame invariant J * =J MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaCaaaleqabaGaaiOkaaaaki abg2da9iaadQeaaaa@3469@ .

 

 

· Use the definitions to see that the right Cauchy Green strain  Lagrange strain, and the right stretch tensor are related by

C * = F *T F * = F T Q T QF=C E * =E U * =U MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4qamaaCaaaleqabaGaaiOkaaaaki abg2da9iaahAeadaahaaWcbeqaaiaacQcacaWGubaaaOGaaCOramaa CaaaleqabaGaaiOkaaaakiabg2da9iaahAeadaahaaWcbeqaaiaads faaaGccaWHrbWaaWbaaSqabeaacaWGubaaaOGaaCyuaiaahAeacqGH 9aqpcaWHdbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caWHfbWaaWbaaSqabeaacaGGQaaaaOGaeyypa0JaaCyr aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHvb WaaWbaaSqabeaacaGGQaaaaOGaeyypa0JaaCyvaaaa@5E75@

 

· The left Cauchy Green strain, Eulerian strain, left stretch tensor are frame indifferent

B * = F * F *T =QF F T Q T =QC Q T V * =QV Q T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqamaaCaaaleqabaGaaiOkaaaaki abg2da9iaahAeadaahaaWcbeqaaiaacQcaaaGccaWHgbWaaWbaaSqa beaacaGGQaGaamivaaaakiabg2da9iaahgfacaWHgbGaaCOramaaCa aaleqabaGaamivaaaakiaahgfadaahaaWcbeqaaiaadsfaaaGccqGH 9aqpcaWHrbGaaC4qaiaahgfadaahaaWcbeqaaiaadsfaaaGccaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaCOvamaaCaaaleqabaGaaiOkaaaakiabg2da9iaahgfaca WHwbGaaCyuamaaCaaaleqabaGaamivaaaaaaa@58B6@

 

· The velocity gradient, stretch rate, and spin tensors transform as

L * = F ˙ * F *1 = Q ˙ F+Q F ˙ F 1 Q T =QL Q T +Ω D * =( L * + L *T )/2=QD Q T W * =( L * L *T )/2=QW Q T +Ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHmbWaaWbaaSqabeaacaGGQa aaaOGaeyypa0JabCOrayaacaWaaWbaaSqabeaacaGGQaaaaOGaaCOr amaaCaaaleqabaGaaiOkaiabgkHiTiaaigdaaaGccqGH9aqpdaqada qaaiqahgfagaGaaiaahAeacqGHRaWkcaWHrbGabCOrayaacaaacaGL OaGaayzkaaGaaCOramaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahg fadaahaaWcbeqaaiaadsfaaaGccqGH9aqpcaWHrbGaaCitaiaahgfa daahaaWcbeqaaiaadsfaaaGccqGHRaWkcaWHPoaabaGaaCiramaaCa aaleqabaGaaiOkaaaakiabg2da9iaacIcacaWHmbWaaWbaaSqabeaa caGGQaaaaOGaey4kaSIaaCitamaaCaaaleqabaGaaiOkaiaadsfaaa GccaGGPaGaai4laiaaikdacqGH9aqpcaWHrbGaaCiraiaahgfadaah aaWcbeqaaiaadsfaaaaakeaacaWHxbWaaWbaaSqabeaacaGGQaaaaO Gaeyypa0JaaiikaiaahYeadaahaaWcbeqaaiaacQcaaaGccqGHsisl caWHmbWaaWbaaSqabeaacaGGQaGaamivaaaakiaacMcacaGGVaGaaG Omaiabg2da9iaahgfacaWHxbGaaCyuamaaCaaaleqabaGaamivaaaa kiabgUcaRiaahM6aaaaa@6BB8@

where we have noted that Ω= Ω T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyQdiabg2da9iabgkHiTiaahM6ada ahaaWcbeqaaiaadsfaaaaaaa@3643@

 

· The infinitesimal strain tensor becomes a rather ambiguous deformation measure with our new choice of reference configuration.  If we use the formal definition ε=sym(u/X) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyTdiabg2da9iaadohacaWG5bGaam yBaiaacIcacqGHciITcaWH1bGaai4laiabgkGi2kaahIfacaGGPaaa aa@3CC6@  this quantity transforms as ε * =Qε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyTdmaaCaaaleqabaGaaiOkaaaaki abg2da9iaahgfacaWH1oaaaa@3627@ .  But this strain is not ‘infinitesimal’ in any sense, and may not be zero in the undeformed solid.  In any practical application of the infinitesimal strain tensor we take the undeformed solid as reference.   It is better to define the infintesimal strain as the symmetric part of the derivative of the displacement vector with respect to position in the undeformed solid, i.e.

ε=sym y(t)y(0) y(0) =sym y(t) X X y(0) I = 1 2 F(t)F (0) 1 +F (0) T F (t) T I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyTdiabg2da9iaadohacaWG5bGaam yBamaabmaabaWaaSaaaeaacqGHciITdaqadaqaaiaahMhacaGGOaGa amiDaiaacMcacqGHsislcaWH5bGaaiikaiaaicdacaGGPaaacaGLOa GaayzkaaaabaGaeyOaIyRaaCyEaiaacIcacaaIWaGaaiykaaaaaiaa wIcacaGLPaaacqGH9aqpcaWGZbGaamyEaiaad2gadaqadaqaamaala aabaGaeyOaIyRaaCyEaiaacIcacaWG0bGaaiykaaqaaiabgkGi2kaa hIfaaaWaaSaaaeaacqGHciITcaWHybaabaGaeyOaIyRaaCyEaiaacI cacaaIWaGaaiykaaaacqGHsislcaWHjbaacaGLOaGaayzkaaGaeyyp a0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiaahAeacaGGOa GaamiDaiaacMcacaWHgbGaaiikaiaaicdacaGGPaWaaWbaaSqabeaa cqGHsislcaaIXaaaaOGaey4kaSIaaCOraiaacIcacaaIWaGaaiykam aaCaaaleqabaGaeyOeI0IaamivaaaakiaahAeacaGGOaGaamiDaiaa cMcadaahaaWcbeqaaiaadsfaaaaakiaawIcacaGLPaaacqGHsislca WHjbaaaa@732A@

This quantity transforms as

ε * =sym( F * (t)F (0) *1 )I=sym QF(t) [QF(0)] 1 I =Qsym (F(t)F (0) 1 I Q T =Qε Q T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyTdmaaCaaaleqabaGaaiOkaaaaki abg2da9iaadohacaWG5bGaamyBaiaacIcacaWHgbWaaWbaaSqabeaa caGGQaaaaOGaaiikaiaadshacaGGPaGaaCOraiaacIcacaaIWaGaai ykamaaCaaaleqabaGaaiOkaiabgkHiTiaaigdaaaGccaGGPaGaeyOe I0IaaCysaiabg2da9iaadohacaWG5bGaamyBamaacmaabaGaaCyuai aahAeacaGGOaGaamiDaiaacMcacaGGBbGaaCyuaiaahAeacaGGOaGa aGimaiaacMcacaGGDbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaey OeI0IaaCysaaGaay5Eaiaaw2haaiabg2da9iaahgfacaWGZbGaamyE aiaad2gadaGadaqaaiaacIcacaWHgbGaaiikaiaadshacaGGPaGaaC OraiaacIcacaaIWaGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaaaa kiabgkHiTiaahMeaaiaawUhacaGL9baacaWHrbWaaWbaaSqabeaaca WGubaaaOGaeyypa0JaaCyuaiaahw7acaWHrbWaaWbaaSqabeaacaWG ubaaaaaa@6EE6@

With the new definition it is therefore a frame indifferent tensor. 

 

· The Cauchy stress is frame indifferent σ * =Qσ Q T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4WdmaaCaaaleqabaGaaiOkaaaaki abg2da9iaahgfacaWHdpGaaCyuamaaCaaaleqabaGaamivaaaaaaa@3823@ . You can see this from the formal definition MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  the tensor maps a vector in the inertial frame (the normal to an internal surface) to another vector in the inertial frame (the traction acting on the internal surface).  Or if you find that unconvincing, you can use the fact that the virtual stress power σ:D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4WdiaacQdacaWHebaaaa@33BA@  (a scalar) must be invariant under a frame change.  This is left as an exercise.

 

· The material stress is frame invariant Σ * =Σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4OdmaaCaaaleqabaGaaiOkaaaaki abg2da9iaaho6aaaa@3529@  (can you show this?)

 

· The nominal stress transforms as

S * =J (QF) 1 Qσ Q T =J F 1 σ Q T =S Q T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uamaaCaaaleqabaGaaiOkaaaaki abg2da9iaadQeacaGGOaGaaCyuaiaahAeacaGGPaWaaWbaaSqabeaa cqGHsislcaaIXaaaaOGaaCyuaKaaalaaho8akiaahgfadaahaaWcbe qaaiaadsfaaaGccqGH9aqpcaWGkbGaaCOramaaCaaaleqabaGaeyOe I0IaaGymaaaajaaWcaWHdpGccaWHrbWaaWbaaSqabeaacaWGubaaaO Gaeyypa0JaaC4uaiaahgfadaahaaWcbeqaaiaadsfaaaaaaa@4A83@

(note that this transformation rule will differ if the nominal stress is defined as the transpose of the measure used here…)

 

· The rate of change of Cauchy stress transforms as

d σ * dt = d dt Qσ Q T = dQ dt σ Q T +Q dσ dt Q T +Qσ dQ dt T =Q dσ dt Q T +Ω σ * σ * Ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaC4WdmaaCaaale qabaGaaiOkaaaaaOqaaiaadsgacaWG0baaaiabg2da9maalaaabaGa amizaaqaaiaadsgacaWG0baaamaabmaabaGaaCyuaiabeo8aZjaahg fadaahaaWcbeqaaiaadsfaaaaakiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiaadsgacaWHrbaabaGaamizaiaadshaaaGaaC4Wdiaahgfada ahaaWcbeqaaiaadsfaaaGccqGHRaWkcaWHrbWaaSaaaeaacaWGKbGa aC4WdaqaaiaadsgacaWG0baaaiaahgfadaahaaWcbeqaaiaadsfaaa GccqGHRaWkcaWHrbGaaC4WdmaalaaabaGaamizaiaahgfaaeaacaWG KbGaamiDaaaadaahaaWcbeqaaiaadsfaaaGccqGH9aqpcaWHrbWaaS aaaeaacaWGKbGaaC4WdaqaaiaadsgacaWG0baaaiaahgfadaahaaWc beqaaiaadsfaaaGccqGHRaWkcaWHPoGaaC4WdmaaCaaaleqabaGaai OkaaaakiabgkHiTiaaho8adaahaaWcbeqaaiaacQcaaaGccaWHPoaa aa@6809@

 

· Since the rate of change of Cauchy stress is not an objective tensor we sometimes construct constitutive equations using alternative measures of stress rate that are objective.   One such example is the Jaumann stress rate

σ = dσ dt Wσ+σW MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaCbiaeaacaWHdpaaleqabaGaey4bIe naaOGaeyypa0ZaaSaaaeaacaWGKbGaaC4WdaqaaiaadsgacaWG0baa aiabgkHiTiaahEfacaWHdpGaey4kaSIaaC4WdiaahEfaaaa@3F65@

where W is the spin tensor.   This quantity transforms as

σ * = d σ * dt W * σ * + σ * W * = d dt Qσ Q T QW Q T +Ω σ * + σ * QW Q T +Ω =Q dσ dt Q T QWσ Q T +QσW Q T =Q σ Q T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWfGaqaaiaaho8adaahaaWcbe qaaiaacQcaaaaabeqaaiabgEGirdaakiabg2da9maalaaabaGaamiz aiaaho8adaahaaWcbeqaaiaacQcaaaaakeaacaWGKbGaamiDaaaacq GHsislcaWHxbWaaWbaaSqabeaacaGGQaaaaOGaaC4WdmaaCaaaleqa baGaaiOkaaaakiabgUcaRiaaho8adaahaaWcbeqaaiaacQcaaaGcca WHxbWaaWbaaSqabeaacaGGQaaaaaGcbaGaeyypa0ZaaSaaaeaacaWG KbaabaGaamizaiaadshaaaWaaeWaaeaacaWHrbGaaC4Wdiaahgfada ahaaWcbeqaaiaadsfaaaaakiaawIcacaGLPaaacqGHsisldaqadaqa aiaahgfacaWHxbGaaCyuamaaCaaaleqabaGaamivaaaakiabgUcaRi aahM6aaiaawIcacaGLPaaacaWHdpWaaWbaaSqabeaacaGGQaaaaOGa ey4kaSIaaC4WdmaaCaaaleqabaGaaiOkaaaakmaabmaabaGaaCyuai aahEfacaWHrbWaaWbaaSqabeaacaWGubaaaOGaey4kaSIaaCyQdaGa ayjkaiaawMcaaaqaaiabg2da9iaahgfadaWcaaqaaiaadsgacaWHdp aabaGaamizaiaadshaaaGaaCyuamaaCaaaleqabaGaamivaaaakiab gkHiTiaahgfacaWHxbGaaC4WdiaahgfadaahaaWcbeqaaiaadsfaaa GccqGHRaWkcaWHrbGaaC4WdiaahEfacaWHrbWaaWbaaSqabeaacaWG ubaaaOGaeyypa0JaaCyuamaaxacabaGaaC4WdaWcbeqaaiabgEGird aakiaahgfadaahaaWcbeqaaiaadsfaaaaaaaa@7D82@

This quantity is frame indifferent.   There are many other examples of frame indifferent stress rates.

 

· We occasionally encounter higher-order tensors in constitutive equations.   An example is the tensor of elastic moduli in linear elasticity, which maps the infinitesimal strain tensor onto Cauchy stress as

σ ij = C ijkl ε kl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGa amiBaaqabaGccqaH1oqzdaWgaaWcbaGaam4AaiaadYgaaeqaaaaa@3E2C@

This maps a frame indifferent tensor (provided we use the frame indifferent definition of infinitesimal strain) onto another frame indifferent tensor, and so must be a frame indifferent tensor itself.   It is easy to show that it transforms as

C ijkl * = Q im Q jn C mnpq Q kp Q lq C * =QQC Q T Q T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaWGPbGaamOAai aadUgacaWGSbaabaGaaiOkaaaakiabg2da9iaadgfadaWgaaWcbaGa amyAaiaad2gaaeqaaOGaamyuamaaBaaaleaacaWGQbGaamOBaaqaba GccaWGdbWaaSbaaSqaaiaad2gacaWGUbGaamiCaiaadghaaeqaaOGa amyuamaaBaaaleaacaWGRbGaamiCaaqabaGccaWGrbWaaSbaaSqaai aadYgacaWGXbaabeaakiabggMi6kaahoeadaahaaWcbeqaaiaacQca aaGccqGH9aqpcaWHrbGaaCyuaiaahoeacaWHrbWaaWbaaSqabeaaca WGubaaaOGaaCyuamaaCaaaleqabaGaamivaaaaaaa@52A7@

Transformation laws for other high order tensors may differ, but will follow as a consequence of their formal definition.

 

By this time you are probably asking yourself why anyone could possibly care about all this.   This is a fair question MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  we don’t use these relations much in practice, but they are useful when we define constitutive laws for a material. This issue is discussed in more detail in Section 3.1