6.2 Slip-line field theory

 

The largest class of exact solutions to boundary value problems in plasticity exploits a technique known as slip line field theory.  The theory simplifies the governing equations for plastic solids by making several restrictive assumptions:

 

1. Plane strain deformation MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  i.e. displacement components in the basis shown satisfy u 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@348D@   and u 1 , u 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki aacYcacaWG1bWaaSbaaSqaaiaaikdaaeqaaaaa@355D@  are functions of x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaaaa a@32C4@  and x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaaa a@32C5@  only

 

2. The loading is quasi-static;

 

3. Temperature changes are neglected;

 

4. Body forces are neglected;

 

5. The solid is idealized as a rigid-perfectly plastic Mises solid. The uniaxial stress-strain curve for this material is illustrated in the figure.  The material properties are characterized by the yield stress in uniaxial tension Y.  Alternatively, the material is sometimes characterized by its yield stress in shear k=Y/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Aaiabg2da9iaadMfacaGGVaWaaO aaaeaacaaIZaaaleqaaaaa@353F@ .

 

Otherwise, the technique can be used to solve any arbitrary 2D boundary value problem for a rigid plastic solid.  It is quite difficult to apply in practice, because it is not easy to find the slip-line field that solves a particular problem.  Nevertheless, a wide range of important solutions have been found.  The main intent of this section is to illustrate how to interpret these solutions, and to outline the basis for slip-line field theory.

 

 

 

6.2.1 Interpreting a slip-line field

 

An example of a slip-line field solution is shown below (This is Hill’s solution to a rigid punch indenting a rigid-plastic half-space).  

 

 


 

 

The slip lines consist of a curvilinear mesh of two families of lines, which always cross each other at right angles.  By convention, one set of lines are named α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  slip-lines (shown in red); the other are called β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@  lines (blue).  The velocity distribution and stress state in the solid can always be determined from the geometry of these lines.

 

 

Stress state at a point in the slip-line field

 

By definition, the slip-lines are always parallel to axes of principal shear stress in the solid.  This means that the stress components in a basis oriented with the α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@ , β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@  directions have the form

σ αα = σ ¯ σ ββ = σ ¯ σ αβ =k=Y/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeg7aHjabeg 7aHbqabaGccqGH9aqpcuaHdpWCgaqeaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdpWCda WgaaWcbaGaeqOSdiMaeqOSdigabeaakiabg2da9iqbeo8aZzaaraGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaeqySdeMaeqOSdiga beaakiabg2da9iaadUgacqGH9aqpcaWGzbGaai4lamaakaaabaGaaG 4maaWcbeaaaaa@6C19@

where σ ¯ = σ αα + σ ββ /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebacqGH9aqpdaqadaqaai abeo8aZnaaBaaaleaacqaHXoqycqaHXoqyaeqaaOGaey4kaSIaeq4W dm3aaSbaaSqaaiabek7aIjabek7aIbqabaaakiaawIcacaGLPaaaca GGVaGaaGOmaaaa@420D@  is the hydrostatic stress (determined using the equations given below), k is the yield stress of the material in shear, and Y is its yield stress in uniaxial tension.  This stress state is sketched below.  Since the shear stress is equal to the shear yield stress, the material evidently deforms by shearing parallel to the slip-lines: this is the origin of their name.

 


 

If ϕ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A8@  denotes the angle between the α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  slip-line and the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B5@  direction, the stress components in the e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaiWaaeaacaWHLbWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aCyzamaaBaaaleaacaaIZaaabeaaaOGaay5Eaiaaw2haaaaa@3A11@  basis can be calculated as

σ 11 = σ ¯ ksin2ϕ σ 22 = σ ¯ +ksin2ϕ σ 12 =kcos2ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0Jafq4WdmNbaebacqGHsislcaWGRbGaci4C aiaacMgacaGGUbGaaGOmaiabew9aMbqaaiabeo8aZnaaBaaaleaaca aIYaGaaGOmaaqabaGccqGH9aqpcuaHdpWCgaqeaiabgUcaRiaadUga ciGGZbGaaiyAaiaac6gacaaIYaGaeqy1dygabaGaeq4Wdm3aaSbaaS qaaiaaigdacaaIYaaabeaakiabg2da9iaadUgaciGGJbGaai4Baiaa cohacaaIYaGaeqy1dygaaaa@56AD@

The Mohr’s circle construction show on the right is a convenient way to remember these results.

 

 

Relations governing hydrostatic stress along slip-lines (Hencky equations)

 

The hydrostatic stress can be shown to satisfy the following relations along slip-lines

σ ¯ 2kϕ=constantα slip line σ ¯ +2kϕ=constantβ slip line MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaHdpWCgaqeaiabgkHiTiaaik dacaWGRbGaeqy1dyMaeyypa0Jaae4yaiaab+gacaqGUbGaae4Caiaa bshacaqGHbGaaeOBaiaabshacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqySdeMaaeiiaiaa bohacaqGSbGaaeyAaiaabchacaqGGaGaaeiBaiaabMgacaqGUbGaae yzaaqaaiqbeo8aZzaaraGaey4kaSIaaGOmaiaadUgacqaHvpGzcqGH 9aqpcaqGJbGaae4Baiaab6gacaqGZbGaaeiDaiaabggacaqGUbGaae iDaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqaHYoGycaqGGaGaae4CaiaabYgacaqGPbGaae iCaiaabccacaqGSbGaaeyAaiaab6gacaqGLbaaaaa@81FB@

If the hydrostatic stress can be determined at any one point on a slip-line (for example at a boundary), it can be deduced everywhere else. Note that if there is a region in the field where both slip lines are straight, the stress is constant.

 

 

The velocity field (Geiringer equations)

 

The velocity field can be expressed as components in a fixed { e 1 , e 2 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaac2haaaa@374F@  basis, or as components parallel and perpendicular to the slip lines, as shown in the figure.  The velocity field satisfies the following equations

d v 1 ds +tanϕ d v 2 ds =0 d v α ds = v β dϕ ds αslip line d v 1 ds cotϕ d v 2 ds =0 d v β ds = v α dϕ ds βslip line MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaGacaqaauaabeqaceaaaeaada WcaaqaaiaadsgacaWG2bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamiz aiaadohaaaGaey4kaSIaciiDaiaacggacaGGUbGaeqy1dy2aaSaaae aacaWGKbGaamODamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG Zbaaaiabg2da9iaaicdaaeaadaWcaaqaaiaadsgacaWG2bWaaSbaaS qaaiabeg7aHbqabaaakeaacaWGKbGaam4CaaaacqGH9aqpcaWG2bWa aSbaaSqaaiabek7aIbqabaGcdaWcaaqaaiaadsgacqaHvpGzaeaaca WGKbGaam4CaaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdaaaiaa w2haaiaaykW7cqaHXoqycaaMc8Uaae4CaiaabYgacaqGPbGaaeiCai aabccacaqGSbGaaeyAaiaab6gacaqGLbaabaWaaiGaaeaafaqabeGa baaabaWaaSaaaeaacaWGKbGaamODamaaBaaaleaacaaIXaaabeaaaO qaaiaadsgacaWGZbaaaiabgkHiTiGacogacaGGVbGaaiiDaiabew9a MnaalaaabaGaamizaiaadAhadaWgaaWcbaGaaGOmaaqabaaakeaaca WGKbGaam4CaaaacqGH9aqpcaaIWaaabaWaaSaaaeaacaWGKbGaamOD amaaBaaaleaacqaHYoGyaeqaaaGcbaGaamizaiaadohaaaGaeyypa0 JaeyOeI0IaamODamaaBaaaleaacqaHXoqyaeqaaOWaaSaaaeaacaWG KbGaeqy1dygabaGaamizaiaadohaaaGaaGPaVlaaykW7caaMc8UaaG PaVdaaaiaaw2haaiaaykW7cqaHYoGycaaMc8Uaae4CaiaabYgacaqG PbGaaeiCaiaabccacaqGSbGaaeyAaiaab6gacaqGLbaaaaa@9992@

 

 

Application to the Hill slip-line field

 

The stress state throughout a slip-line field can be deduced by working step-by-step along the slip lines.  We illustrate the procedure using Hill’s indentation solution.

 


 

 

Consider first the state of stress at the point marked a in the figure above. Clearly, ϕ a =π/4 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaadggaaeqaaO Gaeyypa0JaeqiWdaNaai4laiaaisdaaaa@37F7@  at this point. The stress state can be transformed from a basis aligned with the slip-lines to the fixed { e 1 , e 2 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaac2haaaa@374F@  basis using the Mohr’s circle construction shown in the figure.  Recall (or use the Mohr’s circle to see) that

σ 11 = σ ¯ ksin2ϕ σ 22 = σ ¯ +ksin2ϕ σ 12 =kcos2ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iqbeo8aZzaaraGaeyOeI0Iaam4AaiGacohacaGG PbGaaiOBaiaaikdacqaHvpGzcaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaa kiabg2da9iqbeo8aZzaaraGaey4kaSIaam4AaiGacohacaGGPbGaai OBaiaaikdacqaHvpGzcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7cqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0Jaam 4AaiGacogacaGGVbGaai4CaiaaikdacqaHvpGzaaa@6AB4@

where σ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebaaaa@32BA@  is the hydrostatic component of stress.  The boundary conditions at a require that σ 12 = σ 22 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYa aabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGc cqGH9aqpcaaIWaaaaa@3A86@ .  The first condition is clearly satisfied, since the slip-lines intersect the boundary at ϕ=π/4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaeyypa0JaeqiWdaNaai4lai aaisdaaaa@36DC@ .  We can satisfy the second condition by setting σ ¯ =k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebacqGH9aqpcqGHsislca WGRbaaaa@359D@ .  Finally this gives the stress parallel to the surface as σ 11 =2k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabgkHiTiaaikdacaWGRbaaaa@37ED@

 

The stress must be constant in the triangular region ABC, as the slip lines in this region are straight.

 

Next, consider the stress state at b.  Here, we see that ϕ b =π/4 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaadkgaaeqaaO Gaeyypa0JaeyOeI0IaeqiWdaNaai4laiaaisdaaaa@38E5@ .  We can use the Hencky equation to determine σ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebaaaa@32BA@  at b.  Recall that

σ ¯ 2kϕ=constantα slip line σ ¯ +2kϕ=constantβ slip line MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaHdpWCgaqeaiabgkHiTiaaik dacaWGRbGaeqy1dyMaeyypa0Jaae4yaiaab+gacaqGUbGaae4Caiaa bshacaqGHbGaaeOBaiaabshacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqySdeMaaeiiaiaa bohacaqGSbGaaeyAaiaabchacaqGGaGaaeiBaiaabMgacaqGUbGaae yzaaqaaiqbeo8aZzaaraGaey4kaSIaaGOmaiaadUgacqaHvpGzcqGH 9aqpcaqGJbGaae4Baiaab6gacaqGZbGaaeiDaiaabggacaqGUbGaae iDaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqaHYoGycaqGGaGaae4CaiaabYgacaqGPbGaae iCaiaabccacaqGSbGaaeyAaiaab6gacaqGLbaaaaa@81FB@

so following one of the α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  slip lines we get

σ ¯ b 2k ϕ b = σ ¯ a 2k ϕ a σ ¯ b =kπk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaHdpWCgaqeamaaBaaaleaaca WGIbaabeaakiabgkHiTiaaikdacaWGRbGaeqy1dy2aaSbaaSqaaiaa dkgaaeqaaOGaeyypa0Jafq4WdmNbaebadaWgaaWcbaGaamyyaaqaba GccqGHsislcaaIYaGaam4Aaiabew9aMnaaBaaaleaacaWGHbaabeaa aOqaaiabgkDiElqbeo8aZzaaraWaaSbaaSqaaiaadkgaaeqaaOGaey ypa0JaeyOeI0Iaam4AaiabgkHiTiabec8aWjaadUgaaaaa@4EA8@

Using the basis-change equation we then get

σ 11 =πk σ 22 =(π+2)k σ 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabgkHiTiabec8aWjaadUgacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaaBaaale aacaaIYaGaaGOmaaqabaGccqGH9aqpcqGHsislcaGGOaGaeqiWdaNa ey4kaSIaaGOmaiaacMcacaWGRbGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqa baGccqGH9aqpcaaIWaaaaa@604B@

The pressure under the punch turns out to be uniform (the stress is constant in the triangular region of the slip-line field below the punch) and so the total force (per unit out of plane length) on the punch can be computed as

P=w(2+π)k MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabg2da9iaadEhacaGGOaGaaG OmaiabgUcaRiabec8aWjaacMcacaWGRbaaaa@395A@

where w is the width of the punch.

 

 

How to distinguish the α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  and β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@  families of slip lines

 

Usually, slip-line fields are presented without specifying which set of slip-lines should be taken as the α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  and which should be the β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@  set MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  it is up to you to work out which is which.  In fact, the slip-lines are interchangeable MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  switching α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  and β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@  will simply change the sign of all the stresses.


 

 

You can see this clearly using the Hill solution. The figure above shows the solution with α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  and β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@  lines switched over.  At point a, ϕ=3π/4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaeyypa0JaaG4maiabec8aWj aac+cacaaI0aaaaa@3799@ , and therefore to satisfy σ 22 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9iaaicdaaaa@3611@  we must now choose σ ¯ =k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebacqGH9aqpcaWGRbaaaa@34B1@ .  To find the stress under the contact, we can trace a β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@  slip line to point b. Here, we see that ϕ=π/4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dyMaeyypa0JaeqiWdaNaai4lai aaisdaaaa@36DC@ , so the Hencky equation

σ ¯ b +2k ϕ b = σ ¯ a +2k ϕ a σ ¯ b =k+πk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaHdpWCgaqeamaaBaaaleaaca WGIbaabeaakiabgUcaRiaaikdacaWGRbGaeqy1dy2aaSbaaSqaaiaa dkgaaeqaaOGaeyypa0Jafq4WdmNbaebadaWgaaWcbaGaamyyaaqaba GccqGHRaWkcaaIYaGaam4Aaiabew9aMnaaBaaaleaacaWGHbaabeaa aOqaaiabgkDiElqbeo8aZzaaraWaaSbaaSqaaiaadkgaaeqaaOGaey ypa0Jaam4AaiabgUcaRiabec8aWjaadUgaaaaa@4D9A@

Using the basis-change equation we then get

σ 11 =πk σ 22 =(π+2)k σ 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabec8aWjaadUgacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaO Gaeyypa0Jaaiikaiabec8aWjabgUcaRiaaikdacaGGPaGaam4Aaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaaig dacaaIYaaabeaakiabg2da9iaaicdaaaa@5845@

at point b.  The normal stress acts upwards on the surface MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  so that this represents the stress induced by a rigid punch that is bonded to the surface, and pulled upwards.

 

 

 

6.2.2 Derivation of the slip-line field method.

 

The figure shows a rigid-perfectly plastic solid, with a von-Mises yield surface. The material is characterized by its yield stress in uniaxial tension Y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaaaa@31BE@ , or its yield stress in shear k=Y/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Aaiabg2da9iaadMfacaGGVaWaaO aaaeaacaaIZaaaleqaaaaa@353F@ .   Let u i , ε ij , σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacYcacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiab eo8aZnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@3BE4@  denote the components of displacement, strain and stress in the solid. The solid is assumed to be a long cylinder with its axis parallel to the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction, which is constrained to deform in plane strain, with u 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@348D@  and u 1 , u 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIXaaabeaaki aacYcacaWG1bWaaSbaaSqaaiaaikdaaeqaaaaa@355D@  independent of x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaa a@32C6@ .  It is loaded by subjecting part of its boundary 1 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340E@  to a prescribed velocity, and the remainder 2 R MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340F@  to a prescribed traction, so that

u ˙ α = v α ( x 1 , x 2 )on  1 R σ αβ n α = t β ( x 1 , x 2 )on  2 R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaaceWG1bGbaiaadaWgaaWcbaGaeq ySdegabeaakiabg2da9iaadAhadaqhaaWcbaGaeqySdegabaGaey4f IOcaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam iEamaaBaaaleaacaaIYaaabeaakiaacMcacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aab+gacaqGUbGaaeiiaiabgkGi2oaaBaaaleaacaaIXaaabeaakiaa dkfaaeaacqaHdpWCdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaad6 gadaWgaaWcbaGaeqySdegabeaakiabg2da9iaadshadaqhaaWcbaGa eqOSdigabaGaey4fIOcaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaa qabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacMcacaaM c8UaaGPaVlaaykW7caqGVbGaaeOBaiaabccacqGHciITdaWgaaWcba GaaGOmaaqabaGccaWGsbaaaaa@721A@

where the Greek subscripts α,β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaaiilaiabek7aIbaa@34D0@  can have values of 1 or 2. In practice we will compute the velocity field v i = u ˙ i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacaWGPbaabeaaki abg2da9iqadwhagaGaamaaBaaaleaacaWGPbaabeaaaaa@3621@  rather than the displacement field.

 

 

Summary of governing equations

 

1. Strain-rate MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  velocity relation ε ˙ αβ = 1 2 v α / x β + v β / x α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaeqySde MaeqOSdigabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWa aeWaaeaacqGHciITcaWG2bWaaSbaaSqaaiabeg7aHbqabaGccaGGVa GaeyOaIyRaamiEamaaBaaaleaacqaHYoGyaeqaaOGaey4kaSIaeyOa IyRaamODamaaBaaaleaacqaHYoGyaeqaaOGaai4laiabgkGi2kaadI hadaWgaaWcbaGaeqySdegabeaaaOGaayjkaiaawMcaaaaa@4D43@

 

2. The plastic flow rule ε ˙ ij =3 ε ¯ ˙ p S ij /2Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0JaaG4maiqbew7aLzaaryaacaWaaWbaaSqa beaacaWGWbaaaOGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaGcca GGVaGaaGOmaiaadMfaaaa@3E90@

 

3. Plane strain deformation then requires

ε ˙ 33 =3 ε ¯ ˙ p [ σ 33 ( σ 11 + σ 22 + σ 33 )/3]/2Y=0 σ 33 =( σ 11 + σ 22 )/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaH1oqzgaGaamaaBaaaleaaca aIZaGaaG4maaqabaGccqGH9aqpcaaIZaGafqyTduMbaeHbaiaadaah aaWcbeqaaiaadchaaaGccaGGBbGaeq4Wdm3aaSbaaSqaaiaaiodaca aIZaaabeaakiabgkHiTiaacIcacqaHdpWCdaWgaaWcbaGaaGymaiaa igdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabe aakiabgUcaRiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaGccaGG PaGaai4laiaaiodacaGGDbGaai4laiaaikdacaWGzbGaeyypa0JaaG imaaqaaiabgkDiElabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaGc cqGH9aqpcaGGOaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaabeaaki abgUcaRiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccaGGPaGa ai4laiaaikdaaaaa@6369@

whereupon the flow rule shows that the remaining components of plastic strain rate satisfy

ε ˙ 11 =3 ε ¯ ˙ p σ 11 ( σ 11 + σ 22 + σ 33 )/3 /2Y=3 ε ¯ ˙ p ( σ 11 σ 22 )/4Y ε ˙ 22 =3 ε ¯ ˙ p σ 22 ( σ 11 + σ 22 + σ 33 )/3 /2Y=3 ε ¯ ˙ p ( σ 22 σ 11 )/4Y ε ˙ 12 =3 ε ¯ ˙ p σ 12 /2Y MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaH1oqzgaGaamaaBaaaleaaca aIXaGaaGymaaqabaGccqGH9aqpcaaIZaGafqyTduMbaeHbaiaadaah aaWcbeqaaiaadchaaaGcdaqadaqaaiabeo8aZnaaBaaaleaacaaIXa GaaGymaaqabaGccqGHsislcaGGOaGaeq4Wdm3aaSbaaSqaaiaaigda caaIXaaabeaakiabgUcaRiabeo8aZnaaBaaaleaacaaIYaGaaGOmaa qabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaOGa aiykaiaac+cacaaIZaaacaGLOaGaayzkaaGaai4laiaaikdacaWGzb Gaeyypa0JaaG4maiqbew7aLzaaryaacaWaaWbaaSqabeaacaWGWbaa aOGaaiikaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGHsi slcqaHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaaiykaiaac+ca caaI0aGaamywaaqaaiqbew7aLzaacaWaaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9iaaiodacuaH1oqzgaqegaGaamaaCaaaleqabaGa amiCaaaakmaabmaabaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabe aakiabgkHiTiaacIcacqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqa aOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaakiabgU caRiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaGccaGGPaGaai4l aiaaiodaaiaawIcacaGLPaaacaGGVaGaaGOmaiaadMfacqGH9aqpca aIZaGafqyTduMbaeHbaiaadaahaaWcbeqaaiaadchaaaGccaGGOaGa eq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaakiabgkHiTiabeo8aZn aaBaaaleaacaaIXaGaaGymaaqabaGccaGGPaGaai4laiaaisdacaWG zbaabaGafqyTduMbaiaadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaey ypa0JaaG4maiqbew7aLzaaryaacaWaaWbaaSqabeaacaWGWbaaaOGa eq4Wdm3aaSbaaSqaaiaaigdacaaIYaaabeaakiaac+cacaaIYaGaam ywaaaaaa@9D59@

We observe that these conditions imply that

ε ˙ 11 + ε ˙ 22 =0 v 1 / x 1 + v 2 / x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaiaadaWgaaWcbaGaaGymai aaigdaaeqaaOGaey4kaSIafqyTduMbaiaadaWgaaWcbaGaaGOmaiaa ikdaaeqaaOGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlabgkDiEl abgkGi2kaadAhadaWgaaWcbaGaaGymaaqabaGccaGGVaGaeyOaIyRa amiEamaaBaaaleaacaaIXaaabeaakiabgUcaRiabgkGi2kaadAhada WgaaWcbaGaaGOmaaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaa caaIYaaabeaakiabg2da9iaaicdaaaa@528F@

ε ˙ 11 ε ˙ 22 σ 11 σ 22 = ε ˙ 12 σ 12 ε ˙ 11 ε ˙ 22 σ 12 = ε ˙ 12 σ 11 σ 22 v 1 / x 1 v 2 / x 2 σ 12 = 1 2 v 1 / x 2 + v 2 / x 1 σ 11 σ 22 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiqbew7aLzaacaWaaS baaSqaaiaaigdacaaIXaaabeaakiabgkHiTiqbew7aLzaacaWaaSba aSqaaiaaikdacaaIYaaabeaaaOqaaiabeo8aZnaaBaaaleaacaaIXa GaaGymaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaGOmaiaaikda aeqaaaaakiabg2da9maalaaabaGafqyTduMbaiaadaWgaaWcbaGaaG ymaiaaikdaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYaaa beaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlabgkDiEpaabmaabaGafqyTduMbaiaadaWgaaWcbaGaaGym aiaaigdaaeqaaOGaeyOeI0IafqyTduMbaiaadaWgaaWcbaGaaGOmai aaikdaaeqaaaGccaGLOaGaayzkaaGaeq4Wdm3aaSbaaSqaaiaaigda caaIYaaabeaakiabg2da9iqbew7aLzaacaWaaSbaaSqaaiaaigdaca aIYaaabeaakmaabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaa beaakiabgkHiTiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaaki aawIcacaGLPaaaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGHshI3caaMc8+aaeWaaeaacqGHciITcaWG2bWaaSbaaS qaaiaaigdaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaaGym aaqabaGccqGHsislcqGHciITcaWG2bWaaSbaaSqaaiaaikdaaeqaaO Gaai4laiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIca caGLPaaacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0 ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiabgkGi2kaadAha daWgaaWcbaGaaGymaaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaale aacaaIYaaabeaakiabgUcaRiabgkGi2kaadAhadaWgaaWcbaGaaGOm aaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaO GaayjkaiaawMcaamaabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaI XaaabeaakiabgkHiTiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqaba aakiaawIcacaGLPaaaaaaa@E30C@

 

4. Yield criterion

3 2 S ij S ij Y=0 1 4 σ 11 σ 22 2 + σ 12 2 = k 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaOaaaeaadaWcaaqaaiaaiodaaeaaca aIYaaaaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaam4uamaa BaaaleaacaWGPbGaamOAaaqabaaabeaakiabgkHiTiaadMfacqGH9a qpcaaIWaGaaGPaVlaaykW7caaMc8UaeyO0H4TaaGPaVlaaykW7caaM c8+aaSaaaeaacaaIXaaabaGaaGinaaaadaqadaqaaiabeo8aZnaaBa aaleaacaaIXaGaaGymaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGa aGOmaiaaikdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaOGaey4kaSIaeq4Wdm3aa0baaSqaaiaaigdacaaIYaaabaGaaGOm aaaakiabg2da9iaadUgadaahaaWcbeqaaiaaikdaaaaaaa@5B38@

where k=Y/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Aaiabg2da9iaadMfacaGGVaWaaO aaaeaacaaIZaaaleqaaaaa@353E@  is the shear yield stress of the material, and we have used the condition that σ 33 =( σ 11 + σ 22 )/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIZa aabeaakiabg2da9iaacIcacqaHdpWCdaWgaaWcbaGaaGymaiaaigda aeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaaki aacMcacaGGVaGaaGOmaaaa@3FE2@

 

5. Equilibrium conditions

σ ij / x i =0 σ 11 / x 1 + σ 12 / x 2 =0 σ 22 / x 2 + σ 21 / x 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqGHciITcqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGa amyAaaqabaGccqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlabgkDiElaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaeyOaIyRaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaabeaaki aac+cacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa aGPaVlabgkGi2kabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaGcca GGVaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaakiabg2da9iaa icdaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyOaIyRa eq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaakiaac+cacqGHciITca WG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGPaVlabgkGi2kab eo8aZnaaBaaaleaacaaIYaGaaGymaaqabaGccaGGVaGaeyOaIyRaam iEamaaBaaaleaacaaIXaaabeaakiabg2da9iaaicdaaaaa@C3C7@

 

 

Solution of governing equations by method of characteristics

 

From the preceding section, we observe that we must calculate a velocity field v α ( x α ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamODamaaBaaaleaacqaHXoqyaeqaaO GaaiikaiaadIhadaWgaaWcbaGaeqySdegabeaakiaacMcaaaa@37DA@  and stress field σ αβ ( x α ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccaGGOaGaamiEamaaBaaaleaacqaHXoqyaeqaaOGaaiyk aaaa@3A43@  satisfying governing equations

1 4 σ 11 σ 22 2 + σ 12 2 = k 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVlaaykW7caaMc8+aaSaaaeaaca aIXaaabaGaaGinaaaadaqadaqaaiabeo8aZnaaBaaaleaacaaIXaGa aGymaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaGOmaiaaikdaae qaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa eq4Wdm3aa0baaSqaaiaaigdacaaIYaaabaGaaGOmaaaakiabg2da9i aadUgadaahaaWcbeqaaiaaikdaaaaaaa@4940@

v 1 / x 1 + v 2 / x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamODamaaBaaaleaacaaIXa aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaeyOaIyRaamODamaaBaaaleaacaaIYaaabeaakiaac+cacq GHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGimaaaa @4235@

v 1 / x 1 v 2 / x 2 σ 12 = 1 2 v 1 / x 2 + v 2 / x 1 σ 11 σ 22 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVpaabmaabaGaeyOaIyRaamODam aaBaaaleaacaaIXaaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaeyOeI0IaeyOaIyRaamODamaaBaaaleaacaaIYa aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaGc caGLOaGaayzkaaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYaaabeaaki abg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacqGHciIT caWG2bWaaSbaaSqaaiaaigdaaeqaaOGaai4laiabgkGi2kaadIhada WgaaWcbaGaaGOmaaqabaGccqGHRaWkcqGHciITcaWG2bWaaSbaaSqa aiaaikdaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaaGymaa qabaaakiaawIcacaGLPaaadaqadaqaaiabeo8aZnaaBaaaleaacaaI XaGaaGymaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaGOmaiaaik daaeqaaaGccaGLOaGaayzkaaaaaa@6406@

σ 11 / x 1 + σ 12 / x 2 =0 σ 22 / x 2 + σ 21 / x 1 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaaMc8UaeyOaIyRaeq4Wdm3aaS baaSqaaiaaigdacaaIXaaabeaakiaac+cacqGHciITcaWG4bWaaSba aSqaaiaaigdaaeqaaOGaey4kaSIaaGPaVlabgkGi2kabeo8aZnaaBa aaleaacaaIXaGaaGOmaaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaa leaacaaIYaaabeaakiabg2da9iaaicdaaeaacaaMc8UaeyOaIyRaeq 4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaakiaac+cacqGHciITcaWG 4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGPaVlabgkGi2kabeo 8aZnaaBaaaleaacaaIYaGaaGymaaqabaGccaGGVaGaeyOaIyRaamiE amaaBaaaleaacaaIXaaabeaakiabg2da9iaaicdaaaaa@5FCC@

together with appropriate boundary conditions.

 

We focus first on a general solution to the governing equations.  It is convenient to start by eliminating some of the stress components using the yield condition.  Since the material is at yield, we note that at each point in the solid we could find a basis in which the stress state consists of a shear stress of magnitude k (the shear yield stress), together with an unknown component of hydrostatic stress σ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebaaaa@32BA@ .  The stress state is sketched below.

 


 

Instead of solving for the stress components σ αβ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeg7aHjabek 7aIbqabaaaaa@360E@ , we will calculate the hydrostatic stress σ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebaaaa@32BA@  and the angle ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  between the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaWHXaaabeaaaa a@32B4@  direction and the m 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyBamaaBaaaleaacaaIXaaabeaaaa a@32BC@  direction.   Recall that we can relate σ αβ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeg7aHjabek 7aIbqabaaaaa@360E@  to σ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebaaaa@32BA@ , ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  and k using Mohr’s circle of stress: from the figure on the right, we see that

σ 11 = σ ¯ ksin2ϕ σ 22 = σ ¯ +ksin2ϕ σ 12 =kcos2ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaeyypa0Jafq4WdmNbaebacqGHsislcaWGRbGaci4C aiaacMgacaGGUbGaaGOmaiabew9aMjaaykW7caaMc8UaaGPaVlaayk W7caaMc8oabaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaakiab g2da9iqbeo8aZzaaraGaey4kaSIaam4AaiGacohacaGGPbGaaiOBai aaikdacqaHvpGzcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8oabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2 da9iaadUgaciGGJbGaai4BaiaacohacaaIYaGaeqy1dygaaaa@6931@

 

We now re-write the governing equations in terms of σ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebaaaa@32BA@ , ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  and k.  The yield criterion is satisfied automatically.  The remaining four equations are most conveniently expressed in matrix form

A ij q j x 1 + B ij q j x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGPbGaamOAaa qabaGcdaWcaaqaaiabgkGi2kaadghadaWgaaWcbaGaamOAaaqabaaa keaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiabgUcaRi aadkeadaWgaaWcbaGaamyAaiaadQgaaeqaaOWaaSaaaeaacqGHciIT caWGXbWaaSbaaSqaaiaadQgaaeqaaaGcbaGaeyOaIyRaamiEamaaBa aaleaacaaIYaaabeaaaaGccqGH9aqpcaaIWaaaaa@46FF@

where A and B are 4-dimensional symmetric matrices and q is a 1x4 vector, defined as

 


 

This is a quasi-linear hyperbolic system of PDEs, which may be solved by the method of characteristics. 

 

The first step is to find eigenvalues μ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3295@  and eigenvectors r i MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGPbaabeaaaa a@32F0@  that satisfy

r i A ij =μ r i B ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGPbaabeaaki aadgeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0JaeqiVd0Ma amOCamaaBaaaleaacaWGPbaabeaakiaadkeadaWgaaWcbaGaamyAai aadQgaaeqaaaaa@3D7A@

A straightforward exercise (set det(AμB)=0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciizaiaacwgacaGG0bGaaiikaiaadg eacqGHsislcqaH8oqBcaWGcbGaaiykaiabg2da9iaaicdaaaa@3AF3@  to find the eigenvalues, and substitute back to get eigenvectors, or if you’re lazy use a symbolic manipulation program…) shows that there are two repeated eigenvalues, with corresponding eigenvectors

μ=cotϕ r=[1,0,0,2k] r=[0,1,tanϕ,0] μ=tanϕ r=[1,0,0,2k] r=[0,1,cotϕ,0] MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0Maeyypa0Jaci4yaiaac+gaca GG0bGaeqy1dyMaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daGabaqa auaabeqaceaaaeaacaWGYbGaeyypa0Jaai4waiaaigdacaGGSaGaaG imaiaacYcacaaIWaGaaiilaiabgkHiTiaaikdacaWGRbGaaiyxaaqa aiaadkhacqGH9aqpcaGGBbGaaGimaiaacYcacaaIXaGaaiilaiGacs hacaGGHbGaaiOBaiabew9aMjaacYcacaaIWaGaaiyxaaaaaiaawUha aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaeqiVd0Maeyypa0JaeyOeI0IaciiDaiaa cggacaGGUbGaeqy1dyMaaGPaVlaaykW7caaMc8+aaiqaaeaafaqabe GabaaabaGaamOCaiabg2da9iaacUfacaaIXaGaaiilaiaaicdacaGG SaGaaGimaiaacYcacaaIYaGaam4Aaiaac2faaeaacaWGYbGaeyypa0 Jaai4waiaaicdacaGGSaGaaGymaiaacYcacqGHsislciGGJbGaai4B aiaacshacqaHvpGzcaGGSaGaaGimaiaac2faaaaacaGL7baaaaa@8E6F@

We can now eliminate A from the governing matrix equation

r i B ij μ q j x 1 + q j x 2 =0 1+ μ 2 r i B ij μ 1+ μ 2 q j x 1 + 1 1+ μ 2 q j x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGPbaabeaaki aadkeadaWgaaWcbaGaamyAaiaadQgaaeqaaOWaaeWaaeaacqaH8oqB daWcaaqaaiabgkGi2kaadghadaWgaaWcbaGaamOAaaqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiabgUcaRmaalaaa baGaeyOaIyRaamyCamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGaeyyp a0JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgk DiElaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaOaaaeaacaaIXaGa ey4kaSIaeqiVd02aaWbaaSqabeaacaaIYaaaaaqabaGccaWGYbWaaS baaSqaaiaadMgaaeqaaOGaamOqamaaBaaaleaacaWGPbGaamOAaaqa baGcdaqadaqaamaalaaabaGaeqiVd0gabaWaaOaaaeaacaaIXaGaey 4kaSIaeqiVd02aaWbaaSqabeaacaaIYaaaaaqabaaaaOWaaSaaaeaa cqGHciITcaWGXbWaaSbaaSqaaiaadQgaaeqaaaGcbaGaeyOaIyRaam iEamaaBaaaleaacaaIXaaabeaaaaGccqGHRaWkdaWcaaqaaiaaigda aeaadaGcaaqaaiaaigdacqGHRaWkcqaH8oqBdaahaaWcbeqaaiaaik daaaaabeaaaaGcdaWcaaqaaiabgkGi2kaadghadaWgaaWcbaGaamOA aaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaO GaayjkaiaawMcaaiabg2da9iaaicdaaaa@8354@

Finally, if we set

x 1 s = μ 1+ μ 2 x 2 s = 1 1+ μ 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWG4bWaaSbaaS qaaiaaigdaaeqaaaGcbaGaeyOaIyRaam4CaaaacqGH9aqpdaWcaaqa aiabeY7aTbqaamaakaaabaGaaGymaiabgUcaRiabeY7aTnaaCaaale qabaGaaGOmaaaaaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiabgkGi2k aadIhadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWGZbaaaiab g2da9maalaaabaGaaGymaaqaamaakaaabaGaaGymaiabgUcaRiabeY 7aTnaaCaaaleqabaGaaGOmaaaaaeqaaaaaaaa@5911@

and note that

q j x 1 x 1 s + q j x 2 x 2 s = d q j ds MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaeWaaeaadaWcaaqaaiabgkGi2kaadg hadaWgaaWcbaGaamOAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiaaigdaaeqaaaaakmaalaaabaGaeyOaIyRaamiEamaaBaaaleaaca aIXaaabeaaaOqaaiabgkGi2kaadohaaaGaey4kaSYaaSaaaeaacqGH ciITcaWGXbWaaSbaaSqaaiaadQgaaeqaaaGcbaGaeyOaIyRaamiEam aaBaaaleaacaaIYaaabeaaaaGcdaWcaaqaaiabgkGi2kaadIhadaWg aaWcbaGaaGOmaaqabaaakeaacqGHciITcaWGZbaaaaGaayjkaiaawM caaiabg2da9maalaaabaGaamizaiaadghadaWgaaWcbaGaamOAaaqa baaakeaacaWGKbGaam4Caaaaaaa@5295@

we find that

r i B ij d q j ds =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGPbaabeaaki aadkeadaWgaaWcbaGaamyAaiaadQgaaeqaaOWaaSaaaeaacaWGKbGa amyCamaaBaaaleaacaWGQbaabeaaaOqaaiaadsgacaWGZbaaaiabg2 da9iaaicdaaaa@3C89@

along characteristic lines in the solid that satisfy

x 1 s = μ 1+ μ 2 x 2 s = 1 1+ μ 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWG4bWaaSbaaS qaaiaaigdaaeqaaaGcbaGaeyOaIyRaam4CaaaacqGH9aqpdaWcaaqa aiabeY7aTbqaamaakaaabaGaaGymaiabgUcaRiabeY7aTnaaCaaale qabaGaaGOmaaaaaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiabgkGi2k aadIhadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWGZbaaaiab g2da9maalaaabaGaaGymaaqaamaakaaabaGaaGymaiabgUcaRiabeY 7aTnaaCaaaleqabaGaaGOmaaaaaeqaaaaaaaa@5911@

The special characteristic lines in the solid can be identified more easily if we note that

d x 2 d x 1 = 1 μ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamiEamaaBaaale aacaaIYaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaigdaaeqa aaaakiabg2da9maalaaabaGaaGymaaqaaiabeY7aTbaaaaa@3A25@

which shows that the slope of the characteristic lines satisfies

d x 2 d x 1 =tanϕ d x 2 d x 1 =cotϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamiEamaaBaaale aacaaIYaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaigdaaeqa aaaakiabg2da9iGacshacaGGHbGaaiOBaiabew9aMjaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+a aSaaaeaacaWGKbGaamiEamaaBaaaleaacaaIYaaabeaaaOqaaiaads gacaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiabg2da9iabgkHiTiGa cogacaGGVbGaaiiDaiabew9aMbaa@70A9@

for the two possible values of the eigenvalue μ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3295@ .  This shows that

 

1. There are two sets of characteristic lines (one for each eigenvalue)

 

2. The two sets of characteristics are orthogonal (they therefore define a set of orthogonal curvilinear coordinates in the solid)

 

3. The characteristic lines are trajectories of maximum shear (to see this, recall the definition of ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  ).  For this reason, the characteristics are termed slip lines MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  the material slips (deforms in shear) along these lines.

 

 

Conventionally the characteristics satisfying d x 2 /d x 1 =tanϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadIhadaWgaaWcbaGaaGOmaa qabaGccaGGVaGaamizaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGH 9aqpciGG0bGaaiyyaiaac6gacqaHvpGzaaa@3CE0@  are designated α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  slip lines, while the orthogonal set are designated β MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3280@  slip lines.

 

A representative set of characteristic lines is sketched below.

 


 

When solving a particular boundary value problem, the central issue will be to identify a set of characteristic lines that will satisfy the boundary conditions.  Field equations reduce to simple ODEs that govern variations of hydrostatic pressure and velocity along each slip line.

 

 

Relations along slip-lines

 

To complete the theory, we need to find equations relating the field variables q=[ϕ, v 1 / x 1 , v 2 / x 2 , σ ¯ ] MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCaiabg2da9iaacUfacqaHvpGzca GGSaGaeyOaIyRaamODamaaBaaaleaacaaIXaaabeaakiaac+cacqGH ciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiabgkGi2kaadA hadaWgaaWcbaGaaGOmaaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaa leaacaaIYaaabeaakiaacYcacuaHdpWCgaqeaiaac2faaaa@4902@  along the slip-lines.  To do so we return to the governing equation

r i B ij d q j ds =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGPbaabeaaki aadkeadaWgaaWcbaGaamyAaiaadQgaaeqaaOWaaSaaaeaacaWGKbGa amyCamaaBaaaleaacaWGQbaabeaaaOqaaiaadsgacaWGZbaaaiabg2 da9iaaicdaaaa@3C89@

and substitute for B and r.  For the four separate eigenvectors, we find that r i B ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGPbaabeaaki aadkeadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@35CA@  reduce to

[0,2ksin2ϕ,2k(cos2ϕ1),0] [2ksin2ϕ+2ktanϕcos2ϕ,0,0,tanϕ] μ=cotϕ(α slip-line) [0,2ksinϕ,2k(cosϕ+1),0] [2ksin2ϕ2kcotϕcos2ϕ,0,0,tanϕ] μ=tanϕ(β slip-line) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaGacaqaauaabeqaceaaaeaaca GGBbGaaGimaiaacYcacqGHsislcaaIYaGaam4AaiGacohacaGGPbGa aiOBaiaaikdacqaHvpGzcaGGSaGaaGOmaiaadUgacaGGOaGaci4yai aac+gacaGGZbGaaGOmaiabew9aMjabgkHiTiaaigdacaGGPaGaaiil aiaaicdacaGGDbaabaGaai4waiabgkHiTiaaikdacaWGRbGaci4Cai aacMgacaGGUbGaaGOmaiabew9aMjabgUcaRiaaikdacaWGRbGaciiD aiaacggacaGGUbGaeqy1dyMaci4yaiaac+gacaGGZbGaaGOmaiabew 9aMjaacYcacaaIWaGaaiilaiaaicdacaGGSaGaciiDaiaacggacaGG UbGaeqy1dyMaaiyxaaaaaiaaw2haaiabeY7aTjabg2da9iGacogaca GGVbGaaiiDaiabew9aMjaaykW7caaMc8UaaGPaVlaacIcacqaHXoqy caqGGaGaae4CaiaabYgacaqGPbGaaeiCaiaab2cacaqGSbGaaeyAai aab6gacaqGLbGaaeykaaqaamaaciaabaqbaeqabiqaaaqaaiaacUfa caaIWaGaaiilaiabgkHiTiaaikdacaWGRbGaci4CaiaacMgacaGGUb Gaeqy1dyMaaiilaiaaikdacaWGRbGaaiikaiGacogacaGGVbGaai4C aiabew9aMjabgUcaRiaaigdacaGGPaGaaiilaiaaicdacaGGDbaaba Gaai4waiabgkHiTiaaikdacaWGRbGaci4CaiaacMgacaGGUbGaaGOm aiabew9aMjabgkHiTiaaikdacaWGRbGaci4yaiaac+gacaGG0bGaeq y1dyMaci4yaiaac+gacaGGZbGaaGOmaiabew9aMjaacYcacaaIWaGa aiilaiaaicdacaGGSaGaciiDaiaacggacaGGUbGaeqy1dyMaaiyxaa aaaiaaw2haaiabeY7aTjabg2da9iabgkHiTiGacshacaGGHbGaaiOB aiabew9aMjaaykW7caaMc8UaaGPaVlaacIcacqaHYoGycaqGGaGaae 4CaiaabYgacaqGPbGaaeiCaiaab2cacaqGSbGaaeyAaiaab6gacaqG LbGaaeykaaaaaa@CD41@

 

Computing r i B ij d q j /ds MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCamaaBaaaleaacaWGPbaabeaaki aadkeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamizaiaadghadaWg aaWcbaGaamOAaaqabaGccaGGVaGaamizaiaadohaaaa@3B6C@  and simplifying the trig formulas then yields

d v 1 ds +tanϕ d v 2 ds =0 2k dϕ ds + d σ ¯ ds =0 αslip line d v 1 ds cotϕ d v 2 ds =0 2k dϕ ds + d σ ¯ ds =0 βslip line MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaGacaqaauaabeqaceaaaeaada WcaaqaaiaadsgacaWG2bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamiz aiaadohaaaGaey4kaSIaciiDaiaacggacaGGUbGaeqy1dy2aaSaaae aacaWGKbGaamODamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG Zbaaaiabg2da9iaaicdaaeaacqGHsislcaaIYaGaam4Aamaalaaaba Gaamizaiabew9aMbqaaiaadsgacaWGZbaaaiabgUcaRmaalaaabaGa amizaiqbeo8aZzaaraaabaGaamizaiaadohaaaGaeyypa0JaaGimaa aaaiaaw2haaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaeqySdeMaaGPaVlaabohacaqGSbGaaeyAaiaabchaca qGGaGaaeiBaiaabMgacaqGUbGaaeyzaaqaaiaaykW7daGacaqaauaa beqaceaaaeaadaWcaaqaaiaadsgacaWG2bWaaSbaaSqaaiaaigdaae qaaaGcbaGaamizaiaadohaaaGaeyOeI0Iaci4yaiaac+gacaGG0bGa eqy1dy2aaSaaaeaacaWGKbGaamODamaaBaaaleaacaaIYaaabeaaaO qaaiaadsgacaWGZbaaaiabg2da9iaaicdaaeaacaaIYaGaam4Aamaa laaabaGaamizaiabew9aMbqaaiaadsgacaWGZbaaaiabgUcaRmaala aabaGaamizaiqbeo8aZzaaraaabaGaamizaiaadohaaaGaeyypa0Ja aGimaaaaaiaaw2haaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaeqOSdiMaaGPaVlaabohacaqGSbGaaeyAaiaa bchacaqGGaGaaeiBaiaabMgacaqGUbGaaeyzaaaaaa@A1D6@

 

 

Hencky Equation: Conditions relating σ ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebaaaa@32BA@  and ϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dygaaa@32A7@  along slip lines are often expressed as

σ ¯ 2kϕ=constantα slip line σ ¯ +2kϕ=constantβ slip line MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaHdpWCgaqeaiabgkHiTiaaik dacaWGRbGaeqy1dyMaeyypa0Jaae4yaiaab+gacaqGUbGaae4Caiaa bshacaqGHbGaaeOBaiaabshacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqySdeMaaeiiaiaa bohacaqGSbGaaeyAaiaabchacaqGGaGaaeiBaiaabMgacaqGUbGaae yzaaqaaiqbeo8aZzaaraGaey4kaSIaaGOmaiaadUgacqaHvpGzcqGH 9aqpcaqGJbGaae4Baiaab6gacaqGZbGaaeiDaiaabggacaqGUbGaae iDaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqaHYoGycaqGGaGaae4CaiaabYgacaqGPbGaae iCaiaabccacaqGSbGaaeyAaiaab6gacaqGLbaaaaa@81FB@

These are known as the Hencky equations

 

 

Geiringer equations: One can also obtain simpler expressions relating velocity components along slip-lines.  It is convenient to express the velocity vector as components in a basis oriented with the slip-lines, as shown in the figure.

 

The necessary basis-change is

v α = v 1 cosϕ+ v 2 sinϕ v β = v 1 sinϕ+ v 2 cosϕ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWG2bWaaSbaaSqaaiabeg7aHb qabaGccqGH9aqpcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaci4yaiaa c+gacaGGZbGaeqy1dyMaey4kaSIaamODamaaBaaaleaacaaIYaaabe aakiGacohacaGGPbGaaiOBaiabew9aMbqaaiaadAhadaWgaaWcbaGa eqOSdigabeaakiabg2da9iabgkHiTiaadAhadaWgaaWcbaGaaGymaa qabaGcciGGZbGaaiyAaiaac6gacqaHvpGzcqGHRaWkcaWG2bWaaSba aSqaaiaaikdaaeqaaOGaci4yaiaac+gacaGGZbGaeqy1dygaaaa@556D@

A straightforward algebraic exercise then yields

d v α ds = v β dϕ ds d v β ds = v α dϕ ds MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaamODamaaBaaale aacqaHXoqyaeqaaaGcbaGaamizaiaadohaaaGaeyypa0JaamODamaa BaaaleaacqaHYoGyaeqaaOWaaSaaaeaacaWGKbGaeqy1dygabaGaam izaiaadohaaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8+aaSaaaeaacaWGKbGaamODamaaBaaaleaacq aHYoGyaeqaaaGcbaGaamizaiaadohaaaGaeyypa0JaeyOeI0IaamOD amaaBaaaleaacqaHXoqyaeqaaOWaaSaaaeaacaWGKbGaeqy1dygaba Gaamizaiaadohaaaaaaa@5BF7@

These are known as the Geiringer equations.

 

 

 

6.2.3 Examples of slip-line field solutions to boundary value problems

 

When using slip-line field theory, the first step is always to find the characteristics (known as the slip line field).  This is usually done by trial and error, and can be exceedingly difficult.  These days, we usually hope that some smart person has already been able to find the slip-line field, and if we can’t find the solution in some ancient book we give up and clobber the problem with an FEM package.  If the slip-line field is known, the stress and velocity everywhere in the solid can be determined using the Hencky and Geiringer equations.

 

In this section we give several examples of slip-line field solutions to boundary value problems.

 

 

Plane Strain Extrusion

 

A slip-line field solution to plane strain extrusion through a tapered die is shown below. Friction between the die and workpiece is neglected.

 


 

It is of particular interest to calculate the force P required to extrude the bar. The easiest way to do this is to consider the forces acting on the region ABCDEF.  Note that

 

1. The resultant force on EF is P e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaamiuaiaahwgadaWgaaWcba GaaGymaaqabaaaaa@3477@

 

2. The resultant force on CB is zero (you can see this by noting that no external forces act on the material to the left of CB)

 


 

3. The stress state at a point b on the line CD can be calculated by tracing a slip-line from a to b. The Mohr’s circle construction for this purpose is shown above. At point a, the slip-lines intersect CB at 45 degrees, so that ϕ a = 45 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaadggaaeqaaO Gaeyypa0JaeyOeI0IaaGinaiaaiwdadaahaaWcbeqaaiaaicdaaaaa aa@381B@ ; we also know that σ 11 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iaaicdaaaa@360F@  on CB (because the solid to the left of CB has no forces acting on it). These conditions can be satisfied by choosing σ ¯ =k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebacqGH9aqpcqGHsislca WGRbaaaa@359E@ , so that the stress state at a is σ 11 =0 σ 12 =0 σ 22 =2k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7cqaHdpWCdaWg aaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0JaaGimaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaa beaakiabg2da9iabgkHiTiaaikdacaWGRbaaaa@4EA7@ .  Tracing a β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  slip-line from a to b, we see that σ ¯ b = σ ¯ a +2k( ϕ a ϕ b )=πk/3k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamOyaa qabaGccqGH9aqpcuaHdpWCgaqeamaaBaaaleaacaWGHbaabeaakiab gUcaRiaaikdacaWGRbGaaiikaiabew9aMnaaBaaaleaacaWGHbaabe aakiabgkHiTiabew9aMnaaBaaaleaacaWGIbaabeaakiaacMcacqGH 9aqpcqGHsislcqaHapaCcaWGRbGaai4laiaaiodacqGHsislcaWGRb aaaa@4A5F@ .  Finally, the slip lines intersect CD at 45 degrees, so CD is subjected to a pressure σ nn = σ ¯ b k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaad6gacaWGUb aabeaakiabg2da9iqbeo8aZzaaraWaaSbaaSqaaiaadkgaaeqaaOGa eyOeI0Iaam4Aaaaa@3A9A@  acting normal to CD, while the component of traction tangent to CD is zero.

 

4. CD has length H, so the resultant force acting on CD is H σ nn sin30 e 1 H σ nn cos30 e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamisaiabeo8aZnaaBaaaleaacaWGUb GaamOBaaqabaGcciGGZbGaaiyAaiaac6gacaaIZaGaaGimaiaahwga daWgaaWcbaGaaGymaaqabaGccqGHsislcaWGibGaeq4Wdm3aaSbaaS qaaiaad6gacaWGUbaabeaakiGacogacaGGVbGaai4CaiaaiodacaaI WaGaaCyzamaaBaaaleaacaaIYaaabeaaaaa@4773@

 

5. By symmetry, the resultant force acting on AB is H σ nn sin30 e 1 +H σ nn cos30 e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamisaiabeo8aZnaaBaaaleaacaWGUb GaamOBaaqabaGcciGGZbGaaiyAaiaac6gacaaIZaGaaGimaiaahwga daWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGibGaeq4Wdm3aaSbaaS qaaiaad6gacaWGUbaabeaakiGacogacaGGVbGaai4CaiaaiodacaaI WaGaaCyzamaaBaaaleaacaaIYaaabeaaaaa@4768@

 

6. Equilibrium then gives

P=kH π 3 +2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabg2da9iaadUgacaWGibWaae WaaeaadaWcaaqaaiabec8aWbqaaiaaiodaaaGaey4kaSIaaGOmaaGa ayjkaiaawMcaaaaa@3A28@

 

 

 

Double-notched plate in tension

 

A slip-line field solution for a double-notched plate under tensile loading is shown below. The stress state in the neck, and the load P are of particular interest.

 

 


 

Both can be found by tracing a slip-line from either boundary into the constant stress region at the center of the solid.

 

Consider the slip-line starting at A and ending at B, for example.  At A the slip-lines meet the free surface at 45 degrees.  With α,β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaaiilaiabek7aIbaa@34D0@  designated as shown, ϕ A =απ/4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaadgeaaeqaaO Gaeyypa0JaeqySdeMaeyOeI0IaeqiWdaNaai4laiaaisdaaaa@3A64@  and σ ¯ A =k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamyqaa qabaGccqGH9aqpcaWGRbaaaa@35AD@ .  Following the slip-line to b, we see that ϕ B =π/4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaadkeaaeqaaO Gaeyypa0JaeqiWdaNaai4laiaaisdaaaa@37D9@ , so the Hencky equation gives σ ¯ B =k π2α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamOqaa qabaGccqGH9aqpcaWGRbWaaeWaaeaacqaHapaCcqGHsislcaaIYaGa eqySdegacaGLOaGaayzkaaaaaa@3C3C@ .  The state of stress at b follows as

σ 11 =(π2α)k σ 22 =(π2α+2)k σ 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iaacIcacqaHapaCcqGHsislcaaIYaGaeqySdeMa aiykaiaadUgacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8Uaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaakiabg2da9iaa cIcacqaHapaCcqGHsislcaaIYaGaeqySdeMaey4kaSIaaGOmaiaacM cacaWGRbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0 JaaGimaaaa@665A@

The state of stress is clearly constant along the line connecting the two notches.  The force required to deform the solid is therefore P=ak(π2α+2) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuaiabg2da9iaadggacaWGRbGaai ikaiabec8aWjabgkHiTiaaikdacqaHXoqycqGHRaWkcaaIYaGaaiyk aaaa@3C8D@ .

 

 

Pressurized cylindrical cavity

 

The slip-line field solution to an internally pressurized rigid-plastic cylinder is shown below. The goal is to determine the stress state everywhere in the cylinder, and to calculate the internal pressure necessary to drive the deformation.

 


 

Consider the α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327E@  slip-line, which starts at point A (with cylindrical-polar coordinates r=a,θ=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9iaadggacaGGSaGaaG PaVlaaykW7caaMc8UaaGPaVlabeI7aXjabg2da9iaaicdaaaa@3E15@  ), and ends at B (with cylindrical-polar coordinates  r=b,θ= θ b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9iaadkgacaGGSaGaaG PaVlaaykW7caaMc8UaaGPaVlabeI7aXjabg2da9iabeI7aXnaaBaaa leaacaWGIbaabeaaaaa@4025@

 

1. At point B, the surface is traction free, which requires σ rr = σ rθ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabeo8aZnaaBaaaleaacaWGYbGaeqiUdehabeaa kiabg2da9iaaicdaaaa@3C33@ .  To satisfy σ rθ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacqaH4o qCaeqaaOGaeyypa0JaaGimaaaa@3746@ , the slip-line must meet the surface at 45 degrees ( ϕ B = θ b +π/4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaadkeaaeqaaO Gaeyypa0JaeqiUde3aaSbaaSqaaiaadkgaaeqaaOGaey4kaSIaeqiW daNaai4laiaaisdaaaa@3B8E@  ).  In addition, to satisfy σ rr =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iaaicdaaaa@3687@  the hydrostatic stress σ ¯ B =k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamOqaa qabaGccqGH9aqpcaWGRbaaaa@35AE@ .

 

2. Note that the shear stress component σ rθ =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacqaH4o qCaeqaaOGaeyypa0JaaGimaaaa@3746@  throughout the cylinder.  This means that the slip-line must cross every radial line at 45 degrees (or, if you prefer, it must cross every circumferential line at 45 degrees).

 

3. Consider a small segment ds of the slip-line.  Since the slip-line is at 45 degrees to the radial direction, dr=rdθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadkhacqGH9aqpcaWGYbGaam izaiabeI7aXbaa@375C@ .

 

4. Integrating this result from r=a,θ=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9iaadggacaGGSaGaaG PaVlaaykW7caaMc8UaaGPaVlabeI7aXjabg2da9iaaicdaaaa@3E15@  to (r,θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkhacaGGSaGaeqiUdeNaai ykaaaa@3596@  gives r=a e θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOCaiabg2da9iaadggacaWGLbWaaW baaSqabeaacqaH4oqCaaaaaa@3690@  - i.e. the slip-lines are logarithmic spirals.

 

5. At B, this gives b=aexp( θ B ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyaiabg2da9iaadggaciGGLbGaai iEaiaacchacaGGOaGaeqiUde3aaSbaaSqaaiaadkeaaeqaaOGaaiyk aaaa@3A9A@  or θ B =log(b/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaadkeaaeqaaO Gaeyypa0JaciiBaiaac+gacaGGNbGaaiikaiaadkgacaGGVaGaamyy aiaacMcaaaa@3B42@

 

6. Note that ϕ A =π/4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaadgeaaeqaaO Gaeyypa0JaeqiWdaNaai4laiaaisdaaaa@37D8@  and apply the Hencky equation from B to A to see that σ ¯ A =k2k θ B =k2klog(b/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamyqaa qabaGccqGH9aqpcaWGRbGaeyOeI0IaaGOmaiaadUgacqaH4oqCdaWg aaWcbaGaamOqaaqabaGccqGH9aqpcaWGRbGaeyOeI0IaaGOmaiaadU gaciGGSbGaai4BaiaacEgacaGGOaGaamOyaiaac+cacaWGHbGaaiyk aaaa@4631@

7. Finally, the basis change equation shows that σ rr = p A = σ ¯ A k=2klog(b/a) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabgkHiTiaadchadaWgaaWcbaGaamyqaaqabaGc cqGH9aqpcuaHdpWCgaqeamaaBaaaleaacaWGbbaabeaakiabgkHiTi aadUgacqGH9aqpcqGHsislcaaIYaGaam4AaiGacYgacaGGVbGaai4z aiaacIcacaWGIbGaai4laiaadggacaGGPaaaaa@48AD@

 

8. At a generic point (r,θ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadkhacaGGSaGaeqiUdeNaai ykaaaa@3596@ , the same procedure gives σ rr =2klog(b/r) σ θθ =2klog(b/r)+2k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9iabgkHiTiaaikdacaWGRbGaciiBaiaac+gacaGG NbGaaiikaiaadkgacaGGVaGaamOCaiaacMcacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqa aOGaeyypa0JaeyOeI0IaaGOmaiaadUgaciGGSbGaai4BaiaacEgaca GGOaGaamOyaiaac+cacaWGYbGaaiykaiabgUcaRiaaikdacaWGRbaa aa@5923@

 

 

This result can be compared with the axisymmetric elastic-plastic solution in Section 4.2.

 

 

Notched Bar in Bending

 

The figure below shows a slip-line field solution for a notched bar subjected to a pure bending moment.  The solution is valid for ω1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdCNaeyyzImRaaGymaaaa@352E@  (radian).

 


 

The slip-line field can be used to determine the moment M required to deform the bar as a function of the notch angle ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdChaaa@32AD@ . To do so, note that

 

1. The stress acting on the line NO is constant, since slip-lines are straight.

 

2. You can determine the stress at a point D between O and N by following the slip-line CD. The stress must satisfy σ 22 =0 σ 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYa aabeaakiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7cqaHdpWCdaWg aaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0JaaGimaaaa@3FE2@  at C, so the slip-lines must meet the surface at 45 degrees ( ϕ C =π/4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaadoeaaeqaaO Gaeyypa0JaeqiWdaNaai4laiaaisdaaaa@37DA@  ) and we must choose σ ¯ C =k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaam4qaa qabaGccqGH9aqpcqGHsislcaWGRbaaaa@369C@ .  This gives σ 11 =2k σ 22 = σ 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabgkHiTiaaikdacaWGRbGaaGPaVlaaykW7caaM c8Uaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaakiabg2da9iabeo 8aZnaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcaaIWaaaaa@4636@  at D.

 

3. Similarly, the stress acting on the line OP is constant, since slip-lines are straight.  You can calculate the stress at some point B between P and O by following the slip-line AB.  At point A, the surface is free of traction, so the slip-line must meet the surface at 45 degrees ( ϕ A =π/4ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaadgeaaeqaaO Gaeyypa0JaeqiWdaNaai4laiaaisdacqGHsislcqaHjpWDaaa@3A92@  ), and the hydrostatic stress must satisfy σ ¯ A =k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamyqaa qabaGccqGH9aqpcaWGRbaaaa@35AD@ .  At B, we see that ϕ B =π/4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaadkeaaeqaaO Gaeyypa0JaeyOeI0IaeqiWdaNaai4laiaaisdaaaa@38C6@ .  Using the Hencky equation along the β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  slip-line AB, we find that σ ¯ B =k(1+π2ω) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamOqaa qabaGccqGH9aqpcaWGRbGaaiikaiaaigdacqGHRaWkcqaHapaCcqGH sislcaaIYaGaeqyYdCNaaiykaaaa@3DD7@ .  Finally σ 11 =k(2+π2ω) σ 22 =k(π2ω) σ 12 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iaadUgacaGGOaGaaGOmaiabgUcaRiabec8aWjab gkHiTiaaikdacqaHjpWDcaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqa baGccqGH9aqpcaWGRbGaaiikaiabec8aWjabgkHiTiaaikdacqaHjp WDcaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaaBaaaleaa caaIXaGaaGOmaaqabaGccqGH9aqpcaaIWaaaaa@608B@  from the basis change formulas.

 

 

4. The height d of point O can be found from the condition that the axial force applied to the bar must vanish.  Integrating σ 11 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaaaaa@3445@  along the line NOP and setting the result to zero shows that

d= 2+π2ω 4+π2ω (ha) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabg2da9maalaaabaGaaGOmai abgUcaRiabec8aWjabgkHiTiaaikdacqaHjpWDaeaacaaI0aGaey4k aSIaeqiWdaNaeyOeI0IaaGOmaiabeM8a3baacaGGOaGaamiAaiabgk HiTiaadggacaGGPaaaaa@449C@

 

5. Finally, taking moments for the region of the bar to the right of NOP about O shows that

d 2 2 (2k)+ had 2 2 (2+π2ω)kM=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbWaaWbaaSqabeaaca aIYaaaaaGcbaGaaGOmaaaacaGGOaGaaGOmaiaadUgacaGGPaGaey4k aSYaaSaaaeaadaqadaqaaiaadIgacqGHsislcaWGHbGaeyOeI0Iaam izaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikda aaGaaiikaiaaikdacqGHRaWkcqaHapaCcqGHsislcaaIYaGaeqyYdC NaaiykaiaadUgacqGHsislcaWGnbGaeyypa0JaaGimaaaa@4BE6@

Substituting for d and simplifying shows that

M=k (ha) 2 2+π2ω 4+π2ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytaiabg2da9iaadUgacaGGOaGaam iAaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaaIYaaaaOWaaSaa aeaacaaIYaGaey4kaSIaeqiWdaNaeyOeI0IaaGOmaiabeM8a3bqaai aaisdacqGHRaWkcqaHapaCcqGHsislcaaIYaGaeqyYdChaaaaa@4668@

 

Overstressing: At first sight, this solution is valid for any notch angle ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdChaaa@32AD@ , but in fact this is not the case.  A slip-line field is valid only if the rigid regions in the field do not exceed yield.  This means that it must be possible to find a static equilibrium distribution of stress which does not violate the yield criterion anywhere in the rigid part of the solid.  If this cannot be done, the solid is said to be over-stressed.

 

The slip-line field for a notched bar has a peculiar state of stress at point O MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  there is a stress discontinuity (and singularity) at the corner, and it turns out that the region that was assumed rigid in this solution is over-stressed (the maximum principal shear stress exceeds k) if the notch is too sharp. 

 

To see this, consider the rigid region of the solid just to the left of O, as shown in the figure.  The lines OE and OF are adjacent to α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  slip lines, and so are subjected to a combined shear stress k and normal stresses σ ¯ B , σ ¯ D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamOqaa qabaGccaGGSaGafq4WdmNbaebadaWgaaWcbaGaamiraaqabaaaaa@3738@  as shown.  When the value of σ ¯ B σ ¯ D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamOqaa qabaGccqGHsislcuaHdpWCgaqeamaaBaaaleaacaWGebaabeaaaaa@3775@  gets too large, the rigid region OEFO collapses plastically MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  a possible slip-line field at collapse is shown in Figure 6.27.  The slip-line field consists of a 90 degree fan, centered at O.  Applying the Hencky relation along a generic β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  slip-line shows that, at collapse σ ¯ B σ ¯ D =kπ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamOqaa qabaGccqGHsislcuaHdpWCgaqeamaaBaaaleaacaWGebaabeaakiab g2da9iaadUgacqaHapaCaaa@3B32@ , and so for the rigid region to remain below yield σ ¯ B σ ¯ D kπ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamOqaa qabaGccqGHsislcuaHdpWCgaqeamaaBaaaleaacaWGebaabeaakiab gsMiJkaadUgacqaHapaCaaa@3BE1@ .  Substituting the values of σ ¯ B , σ ¯ D MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamOqaa qabaGccaGGSaGafq4WdmNbaebadaWgaaWcbaGaamiraaqabaaaaa@3738@  from parts (2) and (3) then gives ω1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdCNaeyyzImRaaGymaaaa@352E@ .

 

A solution for a sharp notch is shown in below. In the modified field, the region PBNFG is rigid.   The left hand part of the bar rotates about point O, shearing along a pair slip lines formed by the circular arcs AB and GF.  To calculate the moment, we need first to calculate the angles θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@  and ψ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiYdKhaaa@32AE@ , the radius R of the arc BC, the length b of the constant stress regions adjacent to the notch, and the height d of point O above the base of the beam. 

 

 


 

To this end, note that

 

1. At point A, the surface of the wedge is traction free. The slip-lines must intersect the surface at 45 degrees, which shows that ϕ A =ω3π/4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaadgeaaeqaaO Gaeyypa0JaeqyYdCNaeyOeI0IaaG4maiabec8aWjaac+cacaaI0aaa aa@3B4F@  and that σ ¯ A =k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamyqaa qabaGccqGH9aqpcaWGRbaaaa@35AD@ .

 

2. Tracing the α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdegaaa@327F@  slip-line from A to B and noting ϕ B =ω+θ3π/4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaadkeaaeqaaO Gaeyypa0JaeqyYdCNaey4kaSIaeqiUdeNaeyOeI0IaaG4maiabec8a Wjaac+cacaaI0aaaaa@3DE8@  gives σ ¯ B =k+2kθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamOqaa qabaGccqGH9aqpcaWGRbGaey4kaSIaaGOmaiaadUgacqaH4oqCaaa@39F2@ .

 

3. At point D at the base of the beam, the surface is traction free, so the slip-lines must meet the surface at 45 degrees.  This gives ϕ D =π/4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqy1dy2aaSbaaSqaaiaadseaaeqaaO Gaeyypa0JaeqiWdaNaai4laiaaisdaaaa@37DB@  and σ ¯ D =k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamiraa qabaGccqGH9aqpcqGHsislcaWGRbaaaa@369D@ .

 

4. The stress is uniform in the region CDEF, so that σ ¯ C =k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaam4qaa qabaGccqGH9aqpcqGHsislcaWGRbaaaa@369C@ .

 

5. The hydrostatic stresses at B and C must be related by the Hencky equation for a β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  slip-line, which gives σ ¯ B = σ ¯ C +2kψψθ=1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamOqaa qabaGccqGH9aqpcuaHdpWCgaqeamaaBaaaleaacaWGdbaabeaakiab gUcaRiaaikdacaWGRbGaeqiYdKNaeyO0H4TaeqiYdKNaeyOeI0Iaeq iUdeNaeyypa0JaaGymaaaa@4482@ .

 

6. Finally, elementary geometry shows that ω+θ+ψ=π MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdCNaey4kaSIaeqiUdeNaey4kaS IaeqiYdKNaeyypa0JaeqiWdahaaa@3AB8@ .

 

7. Hence, solving (5) and (6) gives θ=(πω1)/2ψ=(πω+1)/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdeNaeyypa0Jaaiikaiabec8aWj abgkHiTiabeM8a3jabgkHiTiaaigdacaGGPaGaai4laiaaikdacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlabeI8a5jabg2da9iaacIcacq aHapaCcqGHsislcqaHjpWDcqGHRaWkcaaIXaGaaiykaiaac+cacaaI Yaaaaa@4FEA@ .

 

8. Geometry gives d+Rsin(ψπ/4)+bcos(ψπ/4)=ha MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabgUcaRiaadkfaciGGZbGaai yAaiaac6gacaGGOaGaeqiYdKNaeyOeI0IaeqiWdaNaai4laiaaisda caGGPaGaey4kaSIaamOyaiGacogacaGGVbGaai4CaiaacIcacqaHip qEcqGHsislcqaHapaCcaGGVaGaaGinaiaacMcacqGH9aqpcaWGObGa eyOeI0Iaamyyaaaa@4D40@ .

 

9. We obtain two more equations relating the unknown variables from the condition that the resultant force acting on any surface that extends from the top of the beam to the bottom must vanish.  The resultant force acting on the surface to the right of PBCD can be calculated as

σ ¯ B b cos(ψπ/4) e 1 +sin(ψπ/4) e 2 kb sin(ψπ/4) e 1 +cos(ψπ/4) e 2 + π/4ψ π/4 k(sinλ e 1 cosλ e 2 ) σ ¯ BC (λ)(cosλ e 1 +sinλ e 2 ) Rdλ +(d 2 R) k( e 1 + e 2 )/ 2 σ ¯ C ( e 1 e 2 )/ 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacuaHdpWCgaqeamaaBaaaleaaca WGcbaabeaakiaadkgadaqadaqaaiGacogacaGGVbGaai4CaiaacIca cqaHipqEcqGHsislcqaHapaCcaGGVaGaaGinaiaacMcacaWHLbWaaS baaSqaaiaaigdaaeqaaOGaey4kaSIaci4CaiaacMgacaGGUbGaaiik aiabeI8a5jabgkHiTiabec8aWjaac+cacaaI0aGaaiykaiaahwgada WgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgkHiTiaadU gacaWGIbWaaeWaaeaaciGGZbGaaiyAaiaac6gacaGGOaGaeqiYdKNa eyOeI0IaeqiWdaNaai4laiaaisdacaGGPaGaaCyzamaaBaaaleaaca aIXaaabeaakiabgUcaRiGacogacaGGVbGaai4CaiaacIcacqaHipqE cqGHsislcqaHapaCcaGGVaGaaGinaiaacMcacaWHLbWaaSbaaSqaai aaikdaaeqaaaGccaGLOaGaayzkaaaabaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkdaWdXbqaamaadm aabaGaam4AaiaacIcaciGGZbGaaiyAaiaac6gacqaH7oaBcaWHLbWa aSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaci4yaiaac+gacaGGZbGaeq 4UdWMaaCyzamaaBaaaleaacaaIYaaabeaakiaacMcacqGHsislcuaH dpWCgaqeamaaBaaaleaacaWGcbGaam4qaaqabaGccaGGOaGaeq4UdW MaaiykaiaacIcaciGGJbGaai4BaiaacohacqaH7oaBcaWHLbWaaSba aSqaaiaaigdaaeqaaOGaey4kaSIaci4CaiaacMgacaGGUbGaeq4UdW MaaCyzamaaBaaaleaacaaIYaaabeaakiaacMcaaiaawUfacaGLDbaa caWGsbGaamizaiabeU7aSbWcbaGaeqiWdaNaai4laiaaisdacqGHsi slcqaHipqEaeaacqaHapaCcaGGVaGaaGinaaqdcqGHRiI8aaGcbaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8Uaey4kaSIaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aiikaiaadsgadaGcaaqaaiaaikdaaSqabaGccqGHsislcaWGsbGaai ykamaadmaabaGaam4AaiaacIcacaWHLbWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSIaaCyzamaaBaaaleaacaaIYaaabeaakiaacMcacaGGVa WaaOaaaeaacaaIYaaaleqaaOGaeyOeI0Iafq4WdmNbaebadaWgaaWc baGaam4qaaqabaGccaGGOaGaaCyzamaaBaaaleaacaaIXaaabeaaki abgkHiTiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaai4lamaa kaaabaGaaGOmaaWcbeaaaOGaay5waiaaw2faaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaWHWaaaaaa@FC97@

where σ ¯ BC = σ ¯ C +2k(π/4λ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamOqai aadoeaaeqaaOGaeyypa0Jafq4WdmNbaebadaWgaaWcbaGaam4qaaqa baGccqGHRaWkcaaIYaGaam4AaiaacIcacqaHapaCcaGGVaGaaGinai abgkHiTiabeU7aSjaacMcaaaa@4215@  is the hydrostatic stress along the slip-line BC.  The results of (7), (8) and (9) can be solved for d, R and b

 

10. Finally, taking moments about O gives M= b 2 σ ¯ B /2+kRb+k R 2 ψ σ ¯ C (2 d 2 R 2 )/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytaiabg2da9iaadkgadaahaaWcbe qaaiaaikdaaaGccuaHdpWCgaqeamaaBaaaleaacaWGcbaabeaakiaa c+cacaaIYaGaey4kaSIaam4AaiaadkfacaWGIbGaey4kaSIaam4Aai aadkfadaahaaWcbeqaaiaaikdaaaGccqaHipqEcqGHsislcuaHdpWC gaqeamaaBaaaleaacaWGdbaabeaakiaacIcacaaIYaGaamizamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaadkfadaahaaWcbeqaaiaaikda aaGccaGGPaGaai4laiaaikdaaaa@4DB0@ . Thus,

M=k (ha) 2 (ωπ) 2 1 / (ωπ1) 2 4 cos 2 (ω1)/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytaiabg2da9iaadUgacaGGOaGaam iAaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaaIYaaaaOWaaiWa aeaacaGGOaGaeqyYdCNaeyOeI0IaeqiWdaNaaiykamaaCaaaleqaba GaaGOmaaaakiabgkHiTiaaigdaaiaawUhacaGL9baacaGGVaWaaiWa aeaacaGGOaGaeqyYdCNaeyOeI0IaeqiWdaNaeyOeI0IaaGymaiaacM cadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI0aGaci4yaiaac+ga caGGZbWaaWbaaSqabeaacaaIYaaaaOWaamWaaeaacaGGOaGaeqyYdC NaeyOeI0IaaGymaiaacMcacaGGVaGaaGOmaaGaay5waiaaw2faaaGa ay5Eaiaaw2haaaaa@5C3F@

 

 

This result is valid only if b0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOyaiabgwMiZkaaicdaaaa@3447@ , which requires ω>0.056 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdCNaeyOpa4JaaGimaiaac6caca aIWaGaaGynaiaaiAdaaaa@375A@ .  In addition, the notch angle must satisfy ω1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdCNaeyizImQaaGymaaaa@351D@  to avoid overstressing the rigid corner at P.