8.7 Structural Elements: Two force members, Beams and Plates

 

It would take many millions of three-dimensional continuum elements to mesh a structure such as a bridge or building, even though the stress and strain fields within individual structural members have a simple form.   So, to make computations easier and faster, special ‘structural elements’ are nearly always used to model a complete structure of this kind.   These elements all approximate the internal stress and strain fields in the member in some appropriate way.   In this section, we discuss a few commonly used structural elements to illustrate their features.

 

 

 

8.7.1 Truss Elements.

 

A truss consists of a set of bars with a uniform cross-section, which are connected by pin joints.   The structure may be loaded by applying forces to some of the joints, while other joints may be fixed or subjected to a known displacement.   If the truss is in static equilibrium, its members are all in a state of uniaxial tension or compression.  Each member can be regarded as a single finite element (a ‘truss’ element), and the joints can be regarded as the nodes connecting the elements.  The joint displacements are the unknown degrees of freedom.

 

The figure shows a simple example of a truss. The geometry of the structure is characterized by

 

1. The initial and final positions  x a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEamaaCaaaleqabaGaamyyaaaaaa a@32F4@ , y a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEamaaCaaaleqabaGaamyyaaaaaa a@32F5@   a=1..N MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiabg2da9iaaigdacaGGUaGaai Olaiaad6eaaaa@35BE@  of the N joints;

 

2. The joint displacements u a = y a x a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaamyyaaaaki abg2da9iaahMhadaahaaWcbeqaaiaadggaaaGccqGHsislcaWH4bWa aWbaaSqabeaacaWGHbaaaaaa@3921@ ;

 

3. The initial and deformed cross-sectional area A 0 k , A k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaDaaaleaacaaIWaaabaGaam 4AaaaakiaacYcacaWGbbWaaWbaaSqabeaacaWGRbaaaaaa@361A@   k=1..m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Aaiabg2da9iaaigdacaGGUaGaai Olaiaad2gaaaa@35E7@  of the m members;

 

4. The initial and final length L 0 k , L k MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaDaaaleaacaaIWaaabaGaam 4AaaaakiaacYcacaWGmbWaaWbaaSqabeaacaWGRbaaaaaa@3630@  of the members;

 

5. The axial and transverse stretch in each member (with joints b and a at its two ends)

λ= L L 0 = y b y a y b y a x b x a x b x a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyypa0ZaaSaaaeaacaWGmb aabaGaamitamaaBaaaleaacaaIWaaabeaaaaGccqGH9aqpdaGcaaqa amaalaaabaWaaeWaaeaacaWH5bWaaWbaaSqabeaacaWGIbaaaOGaey OeI0IaaCyEamaaCaaaleqabaGaamyyaaaaaOGaayjkaiaawMcaaiab gwSixpaabmaabaGaaCyEamaaCaaaleqabaGaamOyaaaakiabgkHiTi aahMhadaahaaWcbeqaaiaadggaaaaakiaawIcacaGLPaaaaeaadaqa daqaaiaahIhadaahaaWcbeqaaiaadkgaaaGccqGHsislcaWH4bWaaW baaSqabeaacaWGHbaaaaGccaGLOaGaayzkaaGaeyyXIC9aaeWaaeaa caWH4bWaaWbaaSqabeaacaWGIbaaaOGaeyOeI0IaaCiEamaaCaaale qabaGaamyyaaaaaOGaayjkaiaawMcaaaaaaSqabaGccaaMc8UaaGPa VlaaykW7aaa@5B7B@

 

6. The axial component of infinitesimal strain in each member

ε= u b u a x b x a x b x a x b x a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTduMaeyypa0ZaaSaaaeaadaqada qaaiaahwhadaahaaWcbeqaaiaadkgaaaGccqGHsislcaWH1bWaaWba aSqabeaacaWGHbaaaaGccaGLOaGaayzkaaGaeyyXIC9aaeWaaeaaca WH4bWaaWbaaSqabeaacaWGIbaaaOGaeyOeI0IaaCiEamaaCaaaleqa baGaamyyaaaaaOGaayjkaiaawMcaaaqaamaabmaabaGaaCiEamaaCa aaleqabaGaamOyaaaakiabgkHiTiaahIhadaahaaWcbeqaaiaadgga aaaakiaawIcacaGLPaaacqGHflY1daqadaqaaiaahIhadaahaaWcbe qaaiaadkgaaaGccqGHsislcaWH4bWaaWbaaSqabeaacaWGHbaaaaGc caGLOaGaayzkaaaaaiaaykW7caaMc8oaaa@560C@

 

7. The axial component of stretch rate in the member with joints a and b at its ends is given by

D= 1 L 2 d y b y a dt y b y a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiraiabg2da9maalaaabaGaaGymaa qaaiaadYeadaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacaWGKbWa aeWaaeaacaWH5bWaaWbaaSqabeaacaWGIbaaaOGaeyOeI0IaaCyEam aaCaaaleqabaGaamyyaaaaaOGaayjkaiaawMcaaaqaaiaadsgacaWG 0baaaiabgwSixpaabmaabaGaaCyEamaaCaaaleqabaGaamOyaaaaki abgkHiTiaahMhadaahaaWcbeqaaiaadggaaaaakiaawIcacaGLPaaa caaMc8UaaGPaVdaa@4AE2@

 

A set of external point forces P n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuamaaCaaaleqabaGaamOBaaaaaa a@32D9@  act at the joints.  The internal forces can be characterized by the axial component of Cauchy stress σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdmhaaa@32A3@  in the members.

 

As usual, the finite element method solves the static equilibrium equation by re-writing it as the equivalent principle of virtual work.  For this purpose, we introduce a kinematically admissible virtual velocity v a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCODamaaCaaaleqabaGaamyyaaaaaa a@32F2@  for each joint (any displacement component that is prescribed for a joint must have a zero virtual velocity).  The virtual velocity has a corresponding virtual stretch rate

d k = v b v a y b y a y b y a y b y a MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaCaaaleqabaGaam4Aaaaaki abg2da9maalaaabaWaaeWaaeaacaWH2bWaaWbaaSqabeaacaWGIbaa aOGaeyOeI0IaaCODamaaCaaaleqabaGaamyyaaaaaOGaayjkaiaawM caaiabgwSixpaabmaabaGaaCyEamaaCaaaleqabaGaamOyaaaakiab gkHiTiaahMhadaahaaWcbeqaaiaadggaaaaakiaawIcacaGLPaaaae aadaqadaqaaiaahMhadaahaaWcbeqaaiaadkgaaaGccqGHsislcaWH 5bWaaWbaaSqabeaacaWGHbaaaaGccaGLOaGaayzkaaGaeyyXIC9aae WaaeaacaWH5bWaaWbaaSqabeaacaWGIbaaaOGaeyOeI0IaaCyEamaa CaaaleqabaGaamyyaaaaaOGaayjkaiaawMcaaaaacaaMc8oaaa@54F2@

The principal of virtual work is then

k=1 m A k L k σ d k = j=1 n P j v j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaabCaeaacaWGbbWaaWbaaSqabeaaca WGRbaaaOGaamitamaaCaaaleqabaGaam4Aaaaakiabeo8aZjaadsga daahaaWcbeqaaiaadUgaaaaabaGaam4Aaiabg2da9iaaigdaaeaaca WGTbaaniabggHiLdGccqGH9aqpdaaeWbqaaiaahcfadaahaaWcbeqa aiaadQgaaaGccqGHflY1caWH2bWaaWbaaSqabeaacaWGQbaaaaqaai aadQgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaaa@4BB6@

where the sums are taken over the members and loaded joints, respectively.   

 

 

Elastic structures with small displacements:  Most practical structures are subjected to modest loads, so their deformations are small and the members remain elastic.   Under these conditions the strain in the members can be approximated by the axial component of the infinitesimal strain ε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdugaaa@3287@ , while the Cauchy stress is given by σ=Eε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaeyypa0Jaamyraiabew7aLb aa@361A@ , where E is the Young’s modulus of the member.   In addition, changes in the the cross-sectional area and length of the members can be neglected.  The infinitesimal strain in the kth member can then be calculated from the displacements of joints a and b at its two ends using the matrix expression

ε= 1 L 0 k 2 x a x b x b x a u a u b MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTduMaeyypa0ZaaSaaaeaacaaIXa aabaWaaeWaaeaacaWGmbWaa0baaSqaaiaaicdaaeaacaWGRbaaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaakmaadmaabaqbae qabeGaaaqaaiaahIhadaahaaWcbeqaaiaadggaaaGccqGHsislcaWH 4bWaaWbaaSqabeaacaWGIbaaaaGcbaGaaCiEamaaCaaaleqabaGaam OyaaaakiabgkHiTiaahIhadaahaaWcbeqaaiaadggaaaaaaaGccaGL BbGaayzxaaWaamWaaeaafaqabeGabaaabaGaaCyDamaaCaaaleqaba GaamyyaaaaaOqaaiaahwhadaahaaWcbeqaaiaadkgaaaaaaaGccaGL BbGaayzxaaaaaa@4C0E@

Here, the vectors are 6 dimensional (for a 3D structure), with the bold symbols representing either three position vector components or three displacement components.  You can multiply out the vector product to see that this form is equivalent to the dot product in item (6) of the preceding sub-section.  The rate of change of infinitesimal strain can replace the virtual stretch rate.   Consequently, the principle of virtual work can be written as

k=1 m v a v b x a x b x b x a E A k L 0 k 3 x a x b x b x a u a u b = j=1 n P j v j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaabCaeaadaWadaqaauaabeqabiaaae aacaWH2bWaaWbaaSqabeaacaWGHbaaaaGcbaGaaCODamaaCaaaleqa baGaamOyaaaaaaaakiaawUfacaGLDbaadaWadaqaauaabeqaceaaae aacaWH4bWaaWbaaSqabeaacaWGHbaaaOGaeyOeI0IaaCiEamaaCaaa leqabaGaamOyaaaaaOqaaiaahIhadaahaaWcbeqaaiaadkgaaaGccq GHsislcaWH4bWaaWbaaSqabeaacaWGHbaaaaaaaOGaay5waiaaw2fa amaalaaabaGaamyraiaadgeadaahaaWcbeqaaiaadUgaaaaakeaada qadaqaaiaadYeadaqhaaWcbaGaaGimaaqaaiaadUgaaaaakiaawIca caGLPaaadaahaaWcbeqaaiaaiodaaaaaaOWaamWaaeaafaqabeqaca aabaGaaCiEamaaCaaaleqabaGaamyyaaaakiabgkHiTiaahIhadaah aaWcbeqaaiaadkgaaaaakeaacaWH4bWaaWbaaSqabeaacaWGIbaaaO GaeyOeI0IaaCiEamaaCaaaleqabaGaamyyaaaaaaaakiaawUfacaGL DbaaaSqaaiaadUgacqGH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aO WaamWaaeaafaqabeGabaaabaGaaCyDamaaCaaaleqabaGaamyyaaaa aOqaaiaahwhadaahaaWcbeqaaiaadkgaaaaaaaGccaGLBbGaayzxaa Gaeyypa0ZaaabCaeaacaWHqbWaaWbaaSqabeaacaWGQbaaaOGaeyyX ICTaaCODamaaCaaaleqabaGaamOAaaaaaeaacaWGQbGaeyypa0JaaG ymaaqaaiaad6gaa0GaeyyeIuoaaaa@711C@

The virtual work equation must be satisfied for all admissible joint velocities.  By choosing a set of virtual displacements in which only one displacement component at one joint is nonzero in turn for all the joints yields a system of linear equations

Ku=PK= k=1 m E A k L 0 k 3 x a x b x b x a x a x b x b x a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4saiaahwhacqGH9aqpcaWHqbGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaC4saiabg2da9maaqahabaWaaSaaaeaacaWGfbGaamyq amaaCaaaleqabaGaam4AaaaaaOqaamaabmaabaGaamitamaaDaaale aacaaIWaaabaGaam4AaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aG4maaaaaaGcdaWadaqaauaabeqaceaaaeaacaWH4bWaaWbaaSqabe aacaWGHbaaaOGaeyOeI0IaaCiEamaaCaaaleqabaGaamOyaaaaaOqa aiaahIhadaahaaWcbeqaaiaadkgaaaGccqGHsislcaWH4bWaaWbaaS qabeaacaWGHbaaaaaaaOGaay5waiaaw2faaiabgEPiepaadmaabaqb aeqabeGaaaqaaiaahIhadaahaaWcbeqaaiaadggaaaGccqGHsislca WH4bWaaWbaaSqabeaacaWGIbaaaaGcbaGaaCiEamaaCaaaleqabaGa amOyaaaakiabgkHiTiaahIhadaahaaWcbeqaaiaadggaaaaaaaGcca GLBbGaayzxaaaaleaacaWGRbGaeyypa0JaaGymaaqaaiaad2gaa0Ga eyyeIuoaaaa@7ABB@

where the symbol MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4LIqmaaa@32E9@  denotes an ‘outer’ or dyadic product of the two vectors, P represents a column vector containing all the external forces, and the sum in the expression for the stiffness represents the assembly of element stiffness matrices into a global stiffness. After modifying the equations to account for any prescribed displacements, they may be solved to determine the unknown joint displacements.


We can illustrate the procedure in more detail using the simple 3-noded planar truss shown in the figure.   The joints have coordinates

x 1 =(0,0) x 2 =(H,0) x 3 =(0,H) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEamaaCaaaleqabaGaaGymaaaaki abg2da9iaacIcacaaIWaGaaiilaiaaicdacaGGPaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aahIhadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaGGOaGaamisaiaa cYcacaaIWaGaaiykaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaahIhadaahaaWcbeqaaiaaiodaaaGc cqGH9aqpcaGGOaGaaGimaiaacYcacaWGibGaaiykaaaa@61BC@

The two element stiffnesses are therefore

k 1 = EA H 3 H 0 H 0 H 0 H 0 = EA H 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 k 2 = EA 2 H 3 H H H H H H H H = EA 2 2 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHRbWaaWbaaSqabeaacaaIXa aaaOGaeyypa0ZaaSaaaeaacaWGfbGaamyqaaqaaiaadIeadaahaaWc beqaaiaaiodaaaaaaOWaamWaaeaafaqabeabbaaaaeaacqGHsislca WGibaabaGaaGimaaqaaiaadIeaaeaacaaIWaaaaaGaay5waiaaw2fa aiabgEPiepaadmaabaqbaeqabeabaaaabaGaeyOeI0Iaamisaaqaai aaicdaaeaacaWGibaabaGaaGimaaaaaiaawUfacaGLDbaacqGH9aqp daWcaaqaaiaadweacaWGbbaabaGaamisaaaadaWadaqaauaabeqaeq aaaaaabaGaaGymaaqaaiaaicdaaeaacqGHsislcaaIXaaabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqGHsi slcaaIXaaabaGaaGimaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaaGimaaaaaiaawUfacaGLDbaaaeaaca WHRbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWGfbGa amyqaaqaamaabmaabaWaaOaaaeaacaaIYaaaleqaaOGaamisaaGaay jkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaGcdaWadaqaauaabeqa eeaaaaqaaiaadIeaaeaacqGHsislcaWGibaabaGaeyOeI0Iaamisaa qaaiaadIeaaaaacaGLBbGaayzxaaGaey4LIq8aamWaaeaafaqabeqa eaaaaeaacaWGibaabaGaeyOeI0IaamisaaqaaiabgkHiTiaadIeaae aacaWGibaaaaGaay5waiaaw2faaiabg2da9maalaaabaGaamyraiaa dgeaaeaacaaIYaWaaOaaaeaacaaIYaaaleqaaOGaamisaaaadaWada qaauaabeqaeqaaaaaabaGaaGymaaqaaiabgkHiTiaaigdaaeaacqGH sislcaaIXaaabaGaaGymaaqaaiabgkHiTiaaigdaaeaacaaIXaaaba GaaGymaaqaaiabgkHiTiaaigdaaeaacqGHsislcaaIXaaabaGaaGym aaqaaiaaigdaaeaacqGHsislcaaIXaaabaGaaGymaaqaaiabgkHiTi aaigdaaeaacqGHsislcaaIXaaabaGaaGymaaaaaiaawUfacaGLDbaa aaaa@8B58@

The element stiffnesses may be combined into a 6x6 global stiffness to yield the (singular) equation system

EA 2 2 H 2 2 0 2 2 0 0 0 0 0 0 0 0 0 2 2 0 (1+2 2 ) 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 u 1 1 u 2 1 u 1 2 u 2 2 u 1 3 u 2 3 = 0 0 P 1 P 2 0 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGfbGaamyqaaqaaiaaik dadaGcaaqaaiaaikdaaSqabaGccaWGibaaamaadmaabaqbaeqabyGb aaaaaeaacaaIYaWaaOaaaeaacaaIYaaaleqaaaGcbaGaaGimaaqaai abgkHiTiaaikdadaGcaaqaaiaaikdaaSqabaaakeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacqGHsislcaaIYaWaaOaaaeaa caaIYaaaleqaaaGcbaGaaGimaaqaaiaacIcacaaIXaGaey4kaSIaaG OmamaakaaabaGaaGOmaaWcbeaakiaacMcaaeaacqGHsislcaaIXaaa baGaeyOeI0IaaGymaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaai abgkHiTiaaigdaaeaacaaIXaaabaGaaGymaaqaaiabgkHiTiaaigda aeaacaaIWaaabaGaaGimaaqaaiabgkHiTiaaigdaaeaacaaIXaaaba GaaGymaaqaaiabgkHiTiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaa igdaaeaacqGHsislcaaIXaaabaGaeyOeI0IaaGymaaqaaiaaigdaaa aacaGLBbGaayzxaaWaamWaaeaafaqabeGbbaaaaeaacaWG1bWaa0ba aSqaaiaaigdaaeaacaaIXaaaaaGcbaGaamyDamaaDaaaleaacaaIYa aabaGaaGymaaaaaOqaaiaadwhadaqhaaWcbaGaaGymaaqaaiaaikda aaaakeaacaWG1bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcbaGaam yDamaaDaaaleaacaaIXaaabaGaaG4maaaaaOqaaiaadwhadaqhaaWc baGaaGOmaaqaaiaaiodaaaaaaaGccaGLBbGaayzxaaGaeyypa0Zaam WaaeaafaqabeGbbaaaaeaacaaIWaaabaGaaGimaaqaaiaadcfadaWg aaWcbaGaaGymaaqabaaakeaacaWGqbWaaSbaaSqaaiaaikdaaeqaaa GcbaGaaGimaaqaaiaaicdaaaaacaGLBbGaayzxaaaaaa@7C8B@

Finally, the equation system must be modified to ensure that the displacements at joints 1 and 3 are zero.   Usually this is done so that the global stiffness remains symmetric, in which case the final system of equations is

EA 2 2 H 1 0 0 0 0 0 0 1 0 0 0 0 0 0 (1+2 2 ) 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 u 1 1 u 2 1 u 1 2 u 2 2 u 1 3 u 2 3 = 0 0 P 1 P 2 0 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGfbGaamyqaaqaaiaaik dadaGcaaqaaiaaikdaaSqabaGccaWGibaaamaadmaabaqbaeqabyGb aaaaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiaaicdaaeaacaaIWaaabaGaaGymaaqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaacI cacaaIXaGaey4kaSIaaGOmamaakaaabaGaaGOmaaWcbeaakiaacMca aeaacqGHsislcaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiabgkHiTiaaigdaaeaacaaIXaaabaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaG ymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaigdaaaaacaGLBbGaayzxaaWaamWaaeaafa qabeGbbaaaaeaacaWG1bWaa0baaSqaaiaaigdaaeaacaaIXaaaaaGc baGaamyDamaaDaaaleaacaaIYaaabaGaaGymaaaaaOqaaiaadwhada qhaaWcbaGaaGymaaqaaiaaikdaaaaakeaacaWG1bWaa0baaSqaaiaa ikdaaeaacaaIYaaaaaGcbaGaamyDamaaDaaaleaacaaIXaaabaGaaG 4maaaaaOqaaiaadwhadaqhaaWcbaGaaGOmaaqaaiaaiodaaaaaaaGc caGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeGbbaaaaeaacaaIWa aabaGaaGimaaqaaiaadcfadaWgaaWcbaGaaGymaaqabaaakeaacaWG qbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaaaaca GLBbGaayzxaaaaaa@7271@

 The system can be solved for the unknown displacement at node 2 with the result

u 1 2 u 2 2 = H EA 1 1 1 1+2 2 P 1 P 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeGabaaabaGaamyDam aaDaaaleaacaaIXaaabaGaaGOmaaaaaOqaaiaadwhadaqhaaWcbaGa aGOmaaqaaiaaikdaaaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaSaaae aacaWGibaabaGaamyraiaadgeaaaWaamWaaeaafaqabeGacaaabaGa aGymaaqaaiaaigdaaeaacaaIXaaabaGaaGymaiabgUcaRiaaikdada GcaaqaaiaaikdaaSqabaaaaaGccaGLBbGaayzxaaWaamWaaeaafaqa beGabaaabaGaamiuamaaBaaaleaacaaIXaaabeaaaOqaaiaadcfada WgaaWcbaGaaGOmaaqabaaaaaGccaGLBbGaayzxaaaaaa@489C@

 

 

Trusses made from nonlinear elastic materials that experience large displacements: More generally, the members of the truss may be made from a rubbery material that can be stretched significantly.   It is more difficult to calculate the deformation and internal forces in this kind of structure, because the stress-strain relation and the equilibrium equation are nonlinear.

 

As an example, consider a truss that has its members made from an incompressible nonlinear elastic material with uniaxial Cauchy stress-v-stretch relation σ(λ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaaiikaiabeU7aSjaacMcaaa a@35B0@   Some specific stress-stretch relations for rubber elasticity models are listed in Section 3.5.5: for example, the ‘neo-hookean’ material has a Cauchy stress

σ=μ(λ λ 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaeyypa0JaeqiVd0Maaiikai abeU7aSjabgkHiTiabeU7aSnaaCaaaleqabaGaeyOeI0IaaGOmaaaa kiaacMcaaaa@3CED@

 

where μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  is the shear modulus.

 

 In a nonlinear structure, it is usually helpful to calculate the joint displacements as the load is applied in a series of increments.   So, suppose that the joint positions y t a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEamaaDaaaleaacaWG0baabaGaam yyaaaaaaa@33EE@  at a time instant t are known, and we wish to determine the new displacements y t+Δt a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyEamaaDaaaleaacaWG0bGaey4kaS IaeuiLdqKaamiDaaqaaiaadggaaaaaaa@372F@  at time t+Δt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabgUcaRiabfs5aejaadshaaa a@351A@ .   The virtual work equation at t+Δt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabgUcaRiabfs5aejaadshaaa a@351A@  is

k=1 m v a v b y t+Δt a y t+Δt b y t+Δt b y t+Δt a A 0 k L 0 k λ 2 σ(λ)= j=1 n P j v j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaabCaeaadaWadaqaauaabeqabiaaae aacaWH2bWaaWbaaSqabeaacaWGHbaaaaGcbaGaaCODamaaCaaaleqa baGaamOyaaaaaaaakiaawUfacaGLDbaadaWadaqaauaabeqaceaaae aacaWH5bWaa0baaSqaaiaadshacqGHRaWkcqqHuoarcaWG0baabaGa amyyaaaakiabgkHiTiaahMhadaqhaaWcbaGaamiDaiabgUcaRiabfs 5aejaadshaaeaacaWGIbaaaaGcbaGaaCyEamaaDaaaleaacaWG0bGa ey4kaSIaeuiLdqKaamiDaaqaaiaadkgaaaGccqGHsislcaWH5bWaa0 baaSqaaiaadshacqGHRaWkcqqHuoarcaWG0baabaGaamyyaaaaaaaa kiaawUfacaGLDbaaaSqaaiaadUgacqGH9aqpcaaIXaaabaGaamyBaa qdcqGHris5aOWaaSaaaeaacaWGbbWaa0baaSqaaiaaicdaaeaacaWG RbaaaaGcbaGaamitamaaDaaaleaacaaIWaaabaGaam4AaaaakiabeU 7aSnaaCaaaleqabaGaaGOmaaaaaaGccqaHdpWCcaGGOaGaeq4UdWMa aiykaiabg2da9maaqahabaGaaCiuamaaCaaaleqabaGaamOAaaaaki abgwSixlaahAhadaahaaWcbeqaaiaadQgaaaaabaGaamOAaiabg2da 9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@7469@

where we have noted that L=λ L 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitaiabg2da9iabeU7aSjaadYeada WgaaWcbaGaaGimaaqabaaaaa@3622@  ( λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3294@  is the stretch of the kth member), and that AL= A 0 L 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiaadYeacqGH9aqpcaWGbbWaaS baaSqaaiaaicdaaeqaaOGaamitamaaBaaaleaacaaIWaaabeaaaaa@36EA@  because the material is incompressible.  The virtual equation must be satisfied for all admissible virtual velocities, which yields a set of nonlinear equations

R= j=1 n P j k=1 m y t+Δt a y t+Δt b y t+Δt b y t+Δt a A 0 k L 0 k σ(λ) λ 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuaiabg2da9maaqahabaGaaCiuam aaCaaaleqabaGaamOAaaaaaeaacaWGQbGaeyypa0JaaGymaaqaaiaa d6gaa0GaeyyeIuoakiabgkHiTmaaqahabaWaamWaaeaafaqabeGaba aabaGaaCyEamaaDaaaleaacaWG0bGaey4kaSIaeuiLdqKaamiDaaqa aiaadggaaaGccqGHsislcaWH5bWaa0baaSqaaiaadshacqGHRaWkcq qHuoarcaWG0baabaGaamOyaaaaaOqaaiaahMhadaqhaaWcbaGaamiD aiabgUcaRiabfs5aejaadshaaeaacaWGIbaaaOGaeyOeI0IaaCyEam aaDaaaleaacaWG0bGaey4kaSIaeuiLdqKaamiDaaqaaiaadggaaaaa aaGccaGLBbGaayzxaaaaleaacaWGRbGaeyypa0JaaGymaaqaaiaad2 gaa0GaeyyeIuoakmaalaaabaGaamyqamaaDaaaleaacaaIWaaabaGa am4AaaaaaOqaaiaadYeadaqhaaWcbaGaaGimaaqaaiaadUgaaaaaaO WaaSaaaeaacqaHdpWCcaGGOaGaeq4UdWMaaiykaaqaaiabeU7aSnaa CaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaWHWaaaaa@6D63@

that must be solved numerically.

 

Nonlinear equilibrium equations in finite element analysis are usually solved using Newton-Raphson iteration.   For a truss, this means that we repeatedly correct a current approximation for the joint displacements w MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Daaaa@31E0@  by an amount Δw MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaaC4Daaaa@3346@  until the equilibrium equation is satisfied.   Ideally the correction should satisfy R a (w+Δw)=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOuamaaCaaaleqabaGaamyyaaaaki aacIcacaWH3bGaey4kaSIaeuiLdqKaaC4DaiaacMcacqGH9aqpcaWH Waaaaa@3A38@ , but of course it is not possible to solve this equation, so instead we take a Taylor expansion and rearrange

KΔw=R(w)K= dR dy MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4saiabfs5aejaahEhacqGH9aqpca WHsbGaaiikaiaahEhacaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWH lbGaeyypa0JaeyOeI0YaaSaaaeaacaWGKbGaaCOuaaqaaiaadsgaca WH5baaaaaa@5DB6@

This is now a set of linear equations which, together with equations for joints with prescribed displacements, can be solved for Δw MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaaC4Daaaa@3346@ .   The stiffness matrix (prior to applying constraints) is

K= k=1 m A 0 k L 0 k dσ dλ 2σ λ 1 L 0 k2 λ 3 w a w b w b w a w a w b w b w a + A 0 k L 0 k σ(λ) λ 2 I I I I MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4saiabg2da9maaqahabaWaaSaaae aacaWGbbWaa0baaSqaaiaaicdaaeaacaWGRbaaaaGcbaGaamitamaa DaaaleaacaaIWaaabaGaam4AaaaaaaGcdaqadaqaamaalaaabaGaam izaiabeo8aZbqaaiaadsgacqaH7oaBaaGaeyOeI0YaaSaaaeaacaaI YaGaeq4WdmhabaGaeq4UdWgaaaGaayjkaiaawMcaamaalaaabaGaaG ymaaqaaiaadYeadaqhaaWcbaGaaGimaaqaaiaadUgacaaIYaaaaOGa eq4UdW2aaWbaaSqabeaacaaIZaaaaaaakmaadmaabaqbaeqabiqaaa qaaiaahEhadaahaaWcbeqaaiaadggaaaGccqGHsislcaWH3bWaaWba aSqabeaacaWGIbaaaaGcbaGaaC4DamaaCaaaleqabaGaamOyaaaaki abgkHiTiaahEhadaahaaWcbeqaaiaadggaaaaaaaGccaGLBbGaayzx aaaaleaacaWGRbGaeyypa0JaaGymaaqaaiaad2gaa0GaeyyeIuoaki abgEPiepaadmaabaqbaeqabeGaaaqaaiaahEhadaahaaWcbeqaaiaa dggaaaGccqGHsislcaWH3bWaaWbaaSqabeaacaWGIbaaaaGcbaGaaC 4DamaaCaaaleqabaGaamOyaaaakiabgkHiTiaahEhadaahaaWcbeqa aiaadggaaaaaaaGccaGLBbGaayzxaaGaey4kaSYaaSaaaeaacaWGbb Waa0baaSqaaiaaicdaaeaacaWGRbaaaaGcbaGaamitamaaDaaaleaa caaIWaaabaGaam4AaaaaaaGcdaWcaaqaaiabeo8aZjaacIcacqaH7o aBcaGGPaaabaGaeq4UdW2aaWbaaSqabeaacaaIYaaaaaaakmaadmaa baqbaeqabiGaaaqaaiaahMeaaeaacqGHsislcaWHjbaabaGaeyOeI0 IaaCysaaqaaiaahMeaaaaacaGLBbGaayzxaaaaaa@80A1@

where I represents a (3x3) identity matrix (for a 3D structure), and the summation represents the assembly of the stiffness matrix for the k th element (which has nodes (a,b) at its two ends) into a global stiffness.

 

The Newton-Raphson equation solver usually works well, but if the joint deflections are so large that the structure ‘snaps through’ an unstable equilibrium configuration, it may fail to converge.   In this case a simple iterative relaxation solver may work better.  This approach involves the following steps.  Start with an initial guess for the joint coordinates w (which is usually the positions at the end of the preceding load-step).  Then:

 

1. Update the coordinates of any joints with prescribed displacements to their deformed positions;

 

2. Compute the force vector R;

 

3. Set rows of R corresponding to degrees of freedom with known displacements to zero

 

4. Check for convergence R <TOL MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaqWaaeaacaWHsbaacaGLhWUaayjcSd GaeyipaWJaamivaiaad+eacaWGmbaaaa@385F@  (where TOL is an appropriate small tolerance).   If the solution has converged update the joint coordinates to y=w and proceed to the next load-step.

 

5. If the solution has not yet converged, updated the approximate joint positions to w=w+γR MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Daiabg2da9iaahEhacqGHRaWkcq aHZoWzcaWHsbaaaa@374A@ , where γ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCgaaa@3287@  is a numerical relaxation factor (for the neo-hookean material γ1/max(Aμ/L) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdCMaeyisISRaaGymaiaac+caci GGTbGaaiyyaiaacIhacaGGOaGaamyqaiabeY7aTjaac+cacaWGmbGa aiykaaaa@3DD3@ , where the max is taken over all members) and proceed to step 2.


 

As an example, the figure above illustrates the predicted deformation of a 3 noded truss structure (with members made from a hyperelastic material with modulus μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  ) subjected to horizontal and vertical forces with ratio P 2 / P 1 =6 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaBaaaleaacaaIYaaabeaaki aac+cacaWGqbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGOnaaaa @36E6@  .   Fig. (a) shows the shape of the deformed structure for various magnitudes of the applied force; while the graph (b) shows the displacement of the loaded joint as a function of the magnitude of the force.

 

 

Trusses made from elastic-plastic materials that experience large displacements: Finally, we show how to analyze a truss that has its members made from a metallic material, which displays elastic behavior at low stresses, and experiences permanent plastic deformation if the stresses exceed yield. 

 

Specifically, consider a truss with members made from an elastic MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  rate independent plastic material that displays power law hardening.  For this type of material, the stretch λ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3293@  in the members can be separated into a reversible elastic part λ e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaWbaaSqabeaacaWGLbaaaa aa@33AB@ , and a permanent plastic part λ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaWbaaSqabeaacaWGWbaaaa aa@33B6@  , so that λ= λ e λ p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWMaeyypa0Jaeq4UdW2aaWbaaS qabeaacaWGLbaaaOGaeq4UdW2aaWbaaSqabeaacaWGWbaaaaaa@3945@ .   The yield stress of the members is related to the accumulated plastic strain ε p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaWbaaSqabeaacaWGWbaaaa aa@33A9@  by

Y= Y 0 (1+ ε p ) m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywaiabg2da9iaadMfadaWgaaWcba GaaGimaaqabaGccaGGOaGaaGymaiabgUcaRiabew7aLnaaCaaaleqa baGaamiCaaaakiaacMcadaahaaWcbeqaaiaad2gaaaaaaa@3B7A@

where Y 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywamaaBaaaleaacaaIWaaabeaaaa a@32A4@  is the initial yield stress, m<1 is the strain hardening exponent, and the accumulated plastic strain is related to the plastic stretch by

d ε p dt = 1 λ p d λ p dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeqyTdu2aaWbaaS qabeaacaWGWbaaaaGcbaGaamizaiaadshaaaGaeyypa0ZaaSaaaeaa caaIXaaabaGaeq4UdW2aaWbaaSqabeaacaWGWbaaaaaakmaaemaaba WaaSaaaeaacaWGKbGaeq4UdW2aaWbaaSqabeaacaWGWbaaaaGcbaGa amizaiaadshaaaaacaGLhWUaayjcSdaaaa@441C@

The uniaxial Cauchy (true) stress in the members is related to the elastic part of the stretch by

σ=Elog( λ e ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaeyypa0JaamyraiGacYgaca GGVbGaai4zaiaacIcacqaH7oaBdaahaaWcbeqaaiaadwgaaaGccaGG Paaaaa@3B71@

where E is the Young’s modulus.  The plastic stretch rate is zero if the stress is below the yield stress, or if the stress magnitude is decreasing.   Otherwise, the plastic stretch rate is given by

d λ p dt = (1+ ε p ) λ p mY dσ dt MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeq4UdW2aaWbaaS qabeaacaWGWbaaaaGcbaGaamizaiaadshaaaGaeyypa0ZaaSaaaeaa caGGOaGaaGymaiabgUcaRiabew7aLnaaCaaaleqabaGaamiCaaaaki aacMcacqaH7oaBdaahaaWcbeqaaiaadchaaaaakeaacaWGTbGaamyw aaaadaWcaaqaaiaadsgacqaHdpWCaeaacaWGKbGaamiDaaaaaaa@46C7@

 

Changes in volume of the members can be neglected. 

 

The virtual work equation and the Newton-Raphson iterations for an elastic-plastic truss have the same form as those listed for a hyperelastic truss in the preceding section.   Only the expressions for the stress and its derivative with respect to stretch need to be changed.   

 

The stress-strain relation for a plastically deforming material depends on the history of loading, so the finite element solution must calculate the gradual change in shape of the structure as the load is applied in a series of increments.  Suppose that at the start of the nth time increment the plastic stretch and the total accumulated plastic strain have values λ n p , ε n p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aa0baaSqaaiaad6gaaeaaca WGWbaaaOGaaiilaiabew7aLnaaDaaaleaacaWGUbaabaGaamiCaaaa aaa@391F@ .   Given the total stretch λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdWgaaa@3294@  at the end of the time step we must now calculate σ, λ n+1 p , ε n+1 p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaaiilaiabeU7aSnaaDaaale aacaWGUbGaey4kaSIaaGymaaqaaiaadchaaaGccaGGSaGaeqyTdu2a a0baaSqaaiaad6gacqGHRaWkcaaIXaaabaGaamiCaaaaaaa@3ECC@  at the end of the time-step.   This can be accomplished using the following (implicit) stress update:

 

1.       Calculate the stress that would occur if the bar remains elastic, which is given by

σ=E logλlog λ n p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaeyypa0Jaamyramaabmaaba GaciiBaiaac+gacaGGNbGaeq4UdWMaeyOeI0IaciiBaiaac+gacaGG NbGaeq4UdW2aa0baaSqaaiaad6gaaeaacaWGWbaaaaGccaGLOaGaay zkaaaaaa@4210@ .

 

2.       Check whether the stress is below the yield stress: σ Y 0 (1+ ε n p ) m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVpaaemaabaGaeq4WdmhacaGLhW UaayjcSdGaeyizImQaamywamaaBaaaleaacaaIWaaabeaakiaacIca caaIXaGaey4kaSIaeqyTdu2aa0baaSqaaiaad6gaaeaacaWGWbaaaO GaaiykamaaCaaaleqabaGaamyBaaaaaaa@42AE@ .  If this condition is satisfied, the bar remains elastic and the stress is given by the formula in step 1.   The tangent is dσ/dλ=E/λ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiabeo8aZjaac+cacaWGKbGaeq 4UdWMaeyypa0Jaamyraiaac+cacqaH7oaBaaa@3B13@ .

 

3.       If the estimate for stress in step 1 exceeds the yield stress, the plastic stretch and the accumulated plastic strain follow from the condition that the stress must equal the yield stress.  This requires

Elog(λ/ λ n+1 p )=sign(σ) Y 0 1+ ε n+1 p m ε n+1 p = ε n p +sign(σ)log( λ n+1 p / λ n p ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqbaeqabiqaaaqaaiaadweaciGGSbGaai 4BaiaacEgacaGGOaGaeq4UdWMaai4laiabeU7aSnaaDaaaleaacaWG UbGaey4kaSIaaGymaaqaaiaadchaaaGccaGGPaGaeyypa0Jaae4Cai aabMgacaqGNbGaaeOBaiaacIcacqaHdpWCcaGGPaGaamywamaaBaaa leaacaaIWaaabeaakmaabmaabaGaaGymaiabgUcaRiabew7aLnaaDa aaleaacaWGUbGaey4kaSIaaGymaaqaaiaadchaaaaakiaawIcacaGL PaaadaahaaWcbeqaaiaad2gaaaaakeaacqaH1oqzdaqhaaWcbaGaam OBaiabgUcaRiaaigdaaeaacaWGWbaaaOGaeyypa0JaeqyTdu2aa0ba aSqaaiaad6gaaeaacaWGWbaaaOGaey4kaSIaae4CaiaabMgacaqGNb GaaeOBaiaacIcacqaHdpWCcaGGPaGaciiBaiaac+gacaGGNbGaaiik aiabeU7aSnaaDaaaleaacaWGUbGaey4kaSIaaGymaaqaaiaadchaaa GccaGGVaGaeq4UdW2aa0baaSqaaiaad6gaaeaacaWGWbaaaOGaaiyk aaaacaaMc8UaaGPaVlaaykW7caaMc8oaaa@774B@

These two equations can be combined to eliminate ε n+1 p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aa0baaSqaaiaad6gacqGHRa WkcaaIXaaabaGaamiCaaaaaaa@3639@  and then solved for λ n+1 p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aa0baaSqaaiaad6gacqGHRa WkcaaIXaaabaGaamiCaaaaaaa@3646@  using Newton-Raphson iteration (or any convenient numerical method).  

 

4.       The stress follows as σ=E logλlog λ n+1 p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaeyypa0Jaamyramaabmaaba GaciiBaiaac+gacaGGNbGaeq4UdWMaeyOeI0IaciiBaiaac+gacaGG NbGaeq4UdW2aa0baaSqaaiaad6gacqGHRaWkcaaIXaaabaGaamiCaa aaaOGaayjkaiaawMcaaaaa@43AD@

 

5.       Finally, a straightforward but tedious calculation shows that the derivative of Cauchy stress with respect to stretch is

dσ dλ = E λ m Y 0 (1+ ε n+1 p ) m1 E+m Y 0 (1+ ε n+1 p ) m1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeq4WdmhabaGaam izaiabeU7aSbaacqGH9aqpdaWcaaqaaiaadweaaeaacqaH7oaBaaWa aSaaaeaacaWGTbGaamywamaaBaaaleaacaaIWaaabeaakiaacIcaca aIXaGaey4kaSIaeqyTdu2aa0baaSqaaiaad6gacqGHRaWkcaaIXaaa baGaamiCaaaakiaacMcadaahaaWcbeqaaiaad2gacqGHsislcaaIXa aaaaGcbaGaamyraiabgUcaRiaad2gacaWGzbWaaSbaaSqaaiaaicda aeqaaOGaaiikaiaaigdacqGHRaWkcqaH1oqzdaqhaaWcbaGaamOBai abgUcaRiaaigdaaeaacaWGWbaaaOGaaiykamaaCaaaleqabaGaamyB aiabgkHiTiaaigdaaaaaaaaa@5753@

 

A truss with elastic-plastic members may experience a sudden loss of stability (particularly if the truss is statically determinate).   Because of the instability, the Newton-Raphson solution to the virtual work equation may fail to converge.    The relaxation method described in the preceding section can sometimes produce a better result.

 


 

As an example, the figure illustrates the predicted deformation of a 3 noded truss structure (with members made from an elastic-plastic material with yield stress Y 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamywamaaBaaaleaacaaIWaaabeaaaa a@32A4@ , Young’s modulus E=200 Y 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiabg2da9iaaikdacaaIWaGaaG imaiaadMfadaWgaaWcbaGaaGimaaqabaaaaa@36A4@  and hardening exponent m=0.25 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyBaiabg2da9iaaicdacaGGUaGaaG Omaiaaiwdaaaa@35BF@  ) subjected to horizontal and vertical forces with ratio P 2 / P 1 =10 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaBaaaleaacaaIYaaabeaaki aac+cacaWGqbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGymaiaa icdaaaa@379B@ .    Fig. (a) shows the shape of the deformed structure for various magnitudes of the applied force; while graph (b) shows the displacement of the loaded joint as a function of the magnitude of the force.

 

 

 

8.7.2 Beam Elements.

 

A beam is a slender member, with uniform (or slowly varying) cross-section, and length much greater than any cross-sectional dimension.   It may be subjected to forces and moments at its ends, or transverse forces along its length.   These cause the beam to bend, twist and stretch.  But because it has a slender cross-section, the stress and strain fields in a beam have a simple form.   There are two approaches to analyzing deformation in an assembly of beams using the finite element method.  The first is to set up and solve a finite element approximation to the classical differential equations governing deformation of a beam.  These equations were derived by approximating the strain field inside the beam in some appropriate way, so these approximations are built into the finite element solution from the beginning.  This idea has two limitations: (i) it works only if the beam remains elastic; and (ii) the most common version of classical beam theory (Euler-Bernoulli theory) assumes that planes transverse to the axis of the undeformed beam remain transverse to the deformed beam axis.   This is accurate for beams with length exceeding about 10 times the beam thickness or width, but not for shorter beams MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  for short beams, ‘shear flexible’ (Timoshenko) beam theory gives better results.   It is also possible to get around these limitations by meshing a beam with standard 3D (or 2D) isoparametric elements, but the mesh would need to include at least 5-10 elements through the thickness of the beam, and since the elements would need to remain roughly cubic or square to avoid locking, a huge number of elements would needed even to analyze a single beam.  To avoid this, a better approach is to modify isoparametric elements so that they produce the correct strain field in a slender beam.   These are called ‘continuum beam’ elements.   Continuum beam theory in 3D is too complicated to discuss here, but we will show how to implement finite element versions of both Euler-Bernoulli and Timoshenko beam theory.

 

 

Summary of beam theory: Beam theory is discussed in (tedious) detail in Chapter 10, but to understand how to solve the equations using the finite element method, only a short summary is needed. 

 

The figure shows a beam.   We will assume that the beam is straight, with a uniform cross-section, and is made from an isotropic elastic material with Young’s modulus E and shear modulus μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@ .  It experiences only small deformations.  It is often assumed that the beam does not stretch or twist, but in the version described here we will account (approximately) for both, but we will assume that sections of the beam that are transverse to its axis remain plane.  In practice, twisting the rod will cause its cross-section to warp.   The procedure necessary to correct for this effect in an elastic beam is discussed in more detail in Chapter 10.

 

The geometry of the beam is usually described using a basis { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  shown in the figure, with e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  is parallel to the beam’s axis, and { e 1 , e 2 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaac2haaaa@374F@  orientated in some convenient direction with respect to its cross section.   We then define the following geometrical quantities:

 

1. The cross-sectional area A= A dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiabg2da9maapefabaGaamizai aadgeaaSqaaiaadgeaaeqaniabgUIiYdaaaa@376B@  

 

2. The position of the neutral line in the cross section (this is a fiber in the beam that does not stretch as the beam bends)

r ¯ = x ¯ 1 e 1 + x ¯ 2 e 2 = 1 A A x 1 e 1 + x 2 e 2 dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOCayaaraGaeyypa0JabmiEayaara WaaSbaaSqaaiaaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaa kiabgUcaRiqadIhagaqeamaaBaaaleaacaaIYaaabeaakiaahwgada WgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWG bbaaamaapefabaWaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadIhadaWgaaWc baGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOa GaayzkaaGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIiYdaaaa@4D04@

 

3. The components of the area moment of inertia tensor for the cross-section

I= I 11 I 12 0 I 12 I 22 0 0 0 I 33 I 11 = A x 2 x ¯ 2 2 dA I 22 = A x 1 x ¯ 1 2 dA I 33 = I 11 + I 22 I 12 = A x 1 x ¯ 1 x 2 x ¯ 2 dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHjbGaeyypa0ZaamWaaeaafa qabeWadaaabaGaamysamaaBaaaleaacaaIXaGaaGymaaqabaaakeaa cqGHsislcaWGjbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaaic daaeaacqGHsislcaWGjbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqa aiaadMeadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaamysamaaBaaaleaacaaIZaGaaG4maaqa baaaaaGccaGLBbGaayzxaaaabaGaamysamaaBaaaleaacaaIXaGaaG ymaaqabaGccqGH9aqpdaWdrbqaamaabmaabaGaamiEamaaBaaaleaa caaIYaaabeaakiabgkHiTiqadIhagaqeamaaDaaaleaacaaIYaaaba aaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaa dgeaaSqaaiaadgeaaeqaniabgUIiYdGccaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaamysamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH9a qpdaWdrbqaamaabmaabaGaamiEamaaBaaaleaacaaIXaaabeaakiab gkHiTiqadIhagaqeamaaDaaaleaacaaIXaaabaaaaaGccaGLOaGaay zkaaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadgeaaSqaaiaadgea aeqaniabgUIiYdGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaamysamaaBaaaleaacaaIZaGaaG4maaqabaGccq GH9aqpcaWGjbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgUcaRiaa dMeadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaaGPaVlaadMeada WgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0Zaa8quaeaadaqadaqa aiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislceWG4bGbaebada qhaaWcbaGaaGymaaqaaaaaaOGaayjkaiaawMcaamaabmaabaGaamiE amaaBaaaleaacaaIYaaabeaakiabgkHiTiqadIhagaqeamaaDaaale aacaaIYaaabaaaaaGccaGLOaGaayzkaaGaamizaiaadgeaaSqaaiaa dgeaaeqaniabgUIiYdGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8oa aaa@C61E@

 

The effects of warping can be included by replacing I 33 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIZaGaaG4maa qabaaaaa@3354@  by a modified polar moment of area.   The procedure is discussed in detail in Chapter 10.    

 

 

The deformed shape of a straight beam is described by specifying the displacement u( x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiaacIcacaWG4bWaaSbaaSqaai aaiodaaeqaaOGaaiykaaaa@3527@  of each point on the neutral line of the cross-section, as a function of position along the length of the beam. The axial stretch of the neutral section is related to the displacement by

ε 33 = e 3 du d x 3 = d u 3 d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaiodacaaIZa aabeaakiabg2da9iaahwgadaWgaaWcbaGaaG4maaqabaGccqGHflY1 daWcaaqaaiaadsgacaWH1baabaGaamizaiaadIhadaWgaaWcbaGaaG 4maaqabaaaaOGaeyypa0ZaaSaaaeaacaWGKbGaamyDamaaBaaaleaa caaIZaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaa aaaaa@44F3@

It is also necessary to calculate the (small) angle of rotation of the beam’s cross-section.   The rotation caused by twisting the beam is quantified by a small rotation θ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaiodaaeqaaa aa@337F@  about the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  axis (with right hand screw convention).  Two different approaches are used to calculate the rotation of the cross-section about the transverse axes:

 

1. Euler-Bernoulli theory (which is valid for long, slender beams with length greater than about 10 times its cross-sectional dimensions) assumes that planes transverse to the beam’s neutral line before deformation remain transverse as the beam bends, so they rotate through small angles

θ 1 = d u 2 d x 3 θ 2 = d u 1 d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaeyOeI0YaaSaaaeaacaWGKbGaamyDamaaBaaaleaacaaI YaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaaki aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaeqiUde3aaSbaaSqaaiaaikdaaeqaaOGaey ypa0ZaaSaaaeaacaWGKbGaamyDamaaBaaaleaacaaIXaaabeaaaOqa aiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaaaaa@5592@

The sign conventions used here are confusing MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  the angles represent small rotations, in radians, about the e 1 , e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaki aacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaaaa@3545@  axes.  The small rotation is a vector, and is related to the displacement by θ= e 3 ×du/d x 3 + θ 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiUdiabg2da9iaahwgadaWgaaWcba GaaG4maaqabaGccqGHxdaTcaWGKbGaaCyDaiaac+cacaWGKbGaamiE amaaBaaaleaacaaIZaaabeaakiabgUcaRiabeI7aXnaaBaaaleaaca aIZaaabeaakiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@41F7@ .    Taking cross products of both sides of this expression with e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  shows also that du/d x 3 = e 3 ×θ+ e 3 du/d x 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaahwhacaGGVaGaamizaiaadI hadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcqGHsislcaWHLbWaaSba aSqaaiaaiodaaeqaaOGaey41aqRaaCiUdiabgUcaRmaabmaabaGaaC yzamaaBaaaleaacaaIZaaabeaakiabgwSixlaadsgacaWH1bGaai4l aiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaa GaaCyzamaaBaaaleaacaaIZaaabeaaaaa@4B62@

 

2. Timoshenko beam theory (which is valid for shorter beams, but will also work for long ones) allows the cross-section to rotate relative to the neutral line. 

 

In both theories, the curvature and twist per unit length of the beam are quantified by a vector κ=dθ/d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOUdiabg2da9iaadsgacaWH4oGaai 4laiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaa@38DB@  

 

A beam may be loaded by subjecting its ends to forces P (0) , P (L) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuamaaCaaaleqabaGaaiikaiaaic dacaGGPaaaaOGaaiilaiaahcfadaahaaWcbeqaaiaacIcacaWGmbGa aiykaaaaaaa@37E3@  or moments Q (0) , Q (L) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuamaaCaaaleqabaGaaiikaiaaic dacaGGPaaaaOGaaiilaiaahgfadaahaaWcbeqaaiaacIcacaWGmbGa aiykaaaaaaa@37E5@ .  Alternatively, one or more components of displacement or rotation may be prescribed at the ends of the beam.  In addition, a distributed force per unit length p( x 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiCaiaacIcacaWG4bWaaSbaaSqaai aaiodaaeqaaOGaaiykaaaa@3522@  may act along the beam’s length.

 

The internal forces in a beam are quantified by internal force and moment vectors acting on each cross-section.  To make this precise, introduce an imaginary cut perpendicular to the axis of the beam, as shown in the figure. The stresses acting on an interior face with normal parallel to the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction exert resultant forces T, and bending moments M. In an elastic beam with Youngs modulus E and shear modulus μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@ , the bending moment vector is related to the curvature vector by

M 1 M 2 M 3 = E I 11 E I 12 0 E I 12 E I 22 0 0 0 μ I 33 κ 1 κ 2 κ 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7daWadaqaauaabeqadeaaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqa aaGcbaGaamytamaaBaaaleaacaaIYaaabeaaaOqaaiaad2eadaWgaa WcbaGaaG4maaqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaa faqabeWadaaabaGaamyraiaadMeadaWgaaWcbaGaaGymaiaaigdaae qaaaGcbaGaeyOeI0IaamyraiaadMeadaWgaaWcbaGaaGymaiaaikda aeqaaaGcbaGaaGimaaqaaiabgkHiTiaadweacaWGjbWaaSbaaSqaai aaigdacaaIYaaabeaaaOqaaiaadweacaWGjbWaaSbaaSqaaiaaikda caaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabeY 7aTjaadMeadaWgaaWcbaGaaG4maiaaiodaaeqaaaaaaOGaay5waiaa w2faamaadmaabaqbaeqabmqaaaqaaiabeQ7aRnaaBaaaleaacaaIXa aabeaaaOqaaiabeQ7aRnaaBaaaleaacaaIYaaabeaaaOqaaiabeQ7a RnaaBaaaleaacaaIYaaabeaaaaaakiaawUfacaGLDbaaaaa@62E8@

Here, I 33 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIZaGaaG4maa qabaaaaa@3354@  may be replaced by a modified polar moment of area to correct for warping of the cross-section.

 

For an Euler-Bernoulli beam the force vector T is a constraint (reaction) force and must be calculated using the equilibrium equation.  For a stretchable Timoshenko beam the forces are related to the displacement of the neutral line and the rotation vector by

T=βAμ du d x 3 + e 3 ×θ + (Eβμ)A e 3 du d x 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iabek7aIjaadgeacq aH8oqBdaqadaqaamaalaaabaGaamizaiaahwhaaeaacaWGKbGaamiE amaaBaaaleaacaaIZaaabeaaaaGccqGHRaWkcaWHLbWaaSbaaSqaai aaiodaaeqaaOGaey41aqRaaCiUdaGaayjkaiaawMcaaiabgUcaRmaa bmaabaGaaiikaiaadweacqGHsislcqaHYoGycqaH8oqBcaGGPaGaam yqaiaahwgadaWgaaWcbaGaaG4maaqabaGccqGHflY1daWcaaqaaiaa dsgacaWH1baabaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaa GccaGLOaGaayzkaaGaaCyzamaaBaaaleaacaaIZaaabeaaaaa@57C1@

where β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  is a constant known as the ‘Timoshenko shear coefficient’ for the beam. Since Timoshenko beam theory is (like all beam theories) an approximation, the value of β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  depends on how it is calculated.  It depends on the geometry of the cross-section and Poisson’s ratio, but for most practical applications one can assume β5/6 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyisISRaaGynaiaac+caca aI2aaaaa@3664@ .

 

The static equilibrium equations for the internal forces are

dT d x 3 +p=0 dM d x 3 + e 3 ×T=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCivaaqaaiaads gacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabgUcaRiaahchacqGH 9aqpcaWHWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8+aaSaaaeaacaWGKbGaaCytaaqaaiaadsgacaWG4bWaaSbaaSqaai aaiodaaeqaaaaakiabgUcaRiaahwgadaWgaaWcbaGaaG4maaqabaGc cqGHxdaTcaWHubGaeyypa0JaaCimaaaa@5C6C@

As usual the finite element method replaces these by the equivalent principle of virtual work.  For a Timoshenko beam these are

0 L T dδu d x 3 d x 3 = 0 L p δud x 3 + P (L) δu(L)+ P (0) δu(0) 0 L M dδθ d x 3 d x 3 = 0 L e 3 ×Tδθd x 3 + Q (L) δθ(L)+ Q (0) δθ(0) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdXbqaaiaahsfacqGHflY1da WcaaqaaiaadsgacqaH0oazcaWH1baabaGaamizaiaadIhadaWgaaWc baGaaG4maaqabaaaaaqaaiaaicdaaeaacaWGmbaaniabgUIiYdGcca WGKbGaamiEamaaBaaaleaacaaIZaaabeaakiabg2da9maapehabaGa aCiCaaWcbaGaaGimaaqaaiaadYeaa0Gaey4kIipakiabgwSixlabes 7aKjaahwhacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaakiabgUca RiaahcfadaahaaWcbeqaaiaacIcacaWGmbGaaiykaaaakiabgwSixl abes7aKjaahwhacaGGOaGaamitaiaacMcacqGHRaWkcaWHqbWaaWba aSqabeaacaGGOaGaaGimaiaacMcaaaGccqGHflY1cqaH0oazcaWH1b GaaiikaiaaicdacaGGPaaabaGaaGPaVpaapehabaGaaCytaiabgwSi xpaalaaabaGaamizaiabes7aKjaahI7aaeaacaWGKbGaamiEamaaBa aaleaacaaIZaaabeaaaaaabaGaaGimaaqaaiaadYeaa0Gaey4kIipa kiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0Zaa8qCae aacaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaey41aqRaaCivaiabgwSi xlabes7aKjaahI7acaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaae aacaaIWaaabaGaamitaaqdcqGHRiI8aOGaey4kaSIaaCyuamaaCaaa leqabaGaaiikaiaadYeacaGGPaaaaOGaeyyXICTaeqiTdqMaaCiUdi aacIcacaWGmbGaaiykaiabgUcaRiaahgfadaahaaWcbeqaaiaacIca caaIWaGaaiykaaaakiabgwSixlabes7aKjaahI7acaGGOaGaaGimai aacMcaaaaa@9FFE@

For the Euler-Bernoulli beam the components of T acting transverse to the beam must be eliminated from the virtual work equation, which gives

0 L M dδθ d x 3 + T 3 δ ε 33 d x 3 = 0 L pδu + Q (0) δθ(0)+ Q (L) δθ(L)+ P (0) δu(0)+ P (L) δu(L) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWdXbqaamaabmaabaGaaCytai abgwSixpaalaaabaGaamizaiabes7aKjaahI7aaeaacaWGKbGaamiE amaaBaaaleaacaaIZaaabeaaaaGccqGHRaWkcaWGubWaaSbaaSqaai aaiodaaeqaaOGaeqiTdqMaeqyTdu2aaSbaaSqaaiaaiodacaaIZaaa beaaaOGaayjkaiaawMcaaaWcbaGaaGimaaqaaiaadYeaa0Gaey4kIi pakiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0Zaa8qC aeaacaWHWbGaeyyXICTaeqiTdqMaaCyDaaWcbaGaaGimaaqaaiaadY eaa0Gaey4kIipaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabgUcaRiaahgfadaahaaWcbeqaaiaacIcacaaIWaGaaiykaaaa kiabgwSixlabes7aKjaahI7acaGGOaGaaGimaiaacMcacqGHRaWkca WHrbWaaWbaaSqabeaacaGGOaGaamitaiaacMcaaaGccqGHflY1cqaH 0oazcaWH4oGaaiikaiaadYeacaGGPaGaey4kaSIaaCiuamaaCaaale qabaGaaiikaiaaicdacaGGPaaaaOGaeyyXICTaeqiTdqMaaCyDaiaa cIcacaaIWaGaaiykaiabgUcaRiaahcfadaahaaWcbeqaaiaacIcaca WGmbGaaiykaaaakiabgwSixlabes7aKjaahwhacaGGOaGaamitaiaa cMcaaaaa@B0FD@

Here, δu MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCyDaaaa@3383@  and δθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCiUdaaa@33C9@  are kinematically admissible variations in displacement and rotation, which must be related by the constraint equation δθ= e 3 ×dδu/d x 3 +δ θ 3 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCiUdiabg2da9iabgkHiTi aahwgadaWgaaWcbaGaaG4maaqabaGccqGHxdaTcaWGKbGaeqiTdqMa aCyDaiaac+cacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaakiabgU caRiabes7aKjabeI7aXnaaBaaaleaacaaIZaaabeaakiaahwgadaWg aaWcbaGaaG4maaqabaaaaa@47D3@

 

Finite element method for elastic Euler-Bernoulli beams: There are three new features in the virtual work equation for an Euler-Bernoulli beam:

 

1. The equation includes moments.  These are related to the second derivative of the displacements, or equivalently, the first derivative of the components of the rotation vector.   The appearance of this second derivative means that the displacement and virtual displacement field must be continuous for the finite element method to converge as the mesh size is reduced.

 

2. The virtual work equation includes the rotation vector;

 

3. The virtual work equation requires that the rotation is correctly related to the displacement.

 

These new features mean that we must use a special scheme to interpolate the displacement field.   In fact, we solve not only for the displacements, but also for the rotation, at discrete points along the beam.

 

To this end, the beam is divided into a series of elements bounded by nodes, as shown in the figure.   The unknowns in the finite element solution are the three components of displacement, and the three components of rotation, at each node.  We will set up a scheme that allows these components to be expressed in an arbitrary {i,j,k} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahMgacaGGSaGaaCOAaiaacY cacaWHRbGaaiyFaaaa@3719@  basis (which allows the beam to have any orientation in space), but for now, suppose that we wish to solve for their components in the { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  basis aligned with the beam.

 

The axial displacement, and the axial component of rotation (i.e. the twist) can then be interpolated linearly, since these are differentiated only once in the virtual work equation.   The transverse components of displacement and rotation must be interpolated using cubic Hermitian polynomials, which ensure that the rotation and displacement are continuous across neighboring elements, and also that the rotation is correctly related to the displacement.    The interpolations can be conveniently written as a matrix expression

 


where u i 1 , u i 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaaG ymaaaakiaacYcacaWG1bWaa0baaSqaaiaadMgaaeaacaaIYaaaaaaa @373B@  and θ i 1 , θ i 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aa0baaSqaaiaadMgaaeaaca aIXaaaaOGaaiilaiabeI7aXnaaDaaaleaacaWGPbaabaGaaGOmaaaa aaa@38B3@  represent the displacements and rotations at the two nodes of the element, and the interpolation functions are

N 1 =(1ξ)/2 N 2 =(1+ξ)/2 M u 1 = ξ1 2 ξ+2 /4 M u 2 = ξ+1 2 2ξ /4 M θ 1 = ξ1 2 ξ+1 /8 M θ 2 = ξ+1 2 ξ1 /8 M u 1 =3 ξ1 ξ+1 /(2 L e ) M u 2 =3 ξ+1 1ξ /(2 L e ) M θ 1 = 3 ξ 2 2ξ1 /(4 L e ) M θ 2 = 3 ξ 2 +2ξ1 /(4 L e ) L e = x 2 x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGobWaaWbaaSqabeaacaaIXa aaaOGaeyypa0JaaiikaiaaigdacqGHsislcqaH+oaEcaGGPaGaai4l aiaaikdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaamOtamaaCaaaleqabaGaaGOmaaaakiabg2 da9iaacIcacaaIXaGaey4kaSIaeqOVdGNaaiykaiaac+cacaaIYaaa baGaamytamaaDaaaleaacaWG1baabaGaaGymaaaakiabg2da9maabm aabaGaeqOVdGNaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakmaabmaabaGaeqOVdGNaey4kaSIaaGOmaaGaayjkai aawMcaaiaac+cacaaI0aGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamytamaaDaaaleaacaWG1baabaGaaGOmaaaakiab g2da9maabmaabaGaeqOVdGNaey4kaSIaaGymaaGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakmaabmaabaGaaGOmaiabgkHiTiabe67a 4bGaayjkaiaawMcaaiaac+cacaaI0aGaaGPaVdqaaiaad2eadaqhaa WcbaGaeqiUdehabaGaaGymaaaakiabg2da9maabmaabaGaeqOVdGNa eyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakm aabmaabaGaeqOVdGNaey4kaSIaaGymaaGaayjkaiaawMcaaiaac+ca caaI4aGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua amytamaaDaaaleaacqaH4oqCaeaacaaIYaaaaOGaeyypa0ZaaeWaae aacqaH+oaEcqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaa caaIYaaaaOWaaeWaaeaacqaH+oaEcqGHsislcaaIXaaacaGLOaGaay zkaaGaai4laiaaiIdacaaMc8oabaGabmytayaafaWaa0baaSqaaiaa dwhaaeaacaaIXaaaaOGaeyypa0JaaG4mamaabmaabaGaeqOVdGNaey OeI0IaaGymaaGaayjkaiaawMcaamaabmaabaGaeqOVdGNaey4kaSIa aGymaaGaayjkaiaawMcaaiaac+cacaGGOaGaaGOmaiaadYeadaWgaa WcbaGaamyzaaqabaGccaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqad2eagaqbamaaDa aaleaacaWG1baabaGaaGOmaaaakiabg2da9iaaiodadaqadaqaaiab e67a4jabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiaaigdacq GHsislcqaH+oaEaiaawIcacaGLPaaacaGGVaGaaiikaiaaikdacaWG mbWaaSbaaSqaaiaadwgaaeqaaOGaaiykaaqaaiqad2eagaqbamaaDa aaleaacqaH4oqCaeaacaaIXaaaaOGaeyypa0ZaaeWaaeaacaaIZaGa eqOVdG3aaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabe67a4j abgkHiTiaaigdaaiaawIcacaGLPaaacaGGVaGaaiikaiaaisdacaWG mbWaaSbaaSqaaiaadwgaaeqaaOGaaiykaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua bmytayaafaWaa0baaSqaaiabeI7aXbqaaiaaikdaaaGccqGH9aqpda qadaqaaiaaiodacqaH+oaEdaahaaWcbeqaaiaaikdaaaGccqGHRaWk caaIYaGaeqOVdGNaeyOeI0IaaGymaaGaayjkaiaawMcaaiaac+caca GGOaGaaGinaiaadYeadaWgaaWcbaGaamyzaaqabaGccaGGPaaabaGa amitamaaBaaaleaacaWGLbaabeaakiabg2da9maaemaabaGaaCiEam aaCaaaleqabaGaaGOmaaaakiabgkHiTiaahIhadaahaaWcbeqaaiaa igdaaaaakiaawEa7caGLiWoaaaaa@628A@

with 1<ξ<1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaGymaiabgYda8iabe67a4j abgYda8iaaigdaaaa@370E@  representing the normalized distance along the element. The curvature and axial strain can then be computed as follows


 

where

N 1 =1/ L e N 2 =1/ L e M u 1 =6ξ/ L e 2 M u 2 =6ξ/ L e 2 M θ 1 = 3ξ1 / L e 2 M θ 2 = 3ξ+1 / L e 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaaceWGobGbauaadaahaaWcbeqaai aaigdaaaGccqGH9aqpcqGHsislcaaIXaGaai4laiaadYeadaWgaaWc baGaamyzaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlqad6eagaqbamaaCaaaleqabaGaaGOmaaaa kiabg2da9iaaigdacaGGVaGaamitamaaBaaaleaacaWGLbaabeaaaO qaaiqad2eagaGbamaaDaaaleaacaWG1baabaGaaGymaaaakiabg2da 9iaaiAdacqaH+oaEcaGGVaGaamitamaaDaaaleaacaWGLbaabaGaaG OmaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UabmytayaagaWaa0baaSqaaiaadwha aeaacaaIYaaaaOGaeyypa0JaeyOeI0IaaGOnaiabe67a4jaac+caca WGmbWaa0baaSqaaiaadwgaaeaacaaIYaaaaOGaaGPaVdqaaiqad2ea gaGbamaaDaaaleaacqaH4oqCaeaacaaIXaaaaOGaeyypa0ZaaeWaae aacaaIZaGaeqOVdGNaeyOeI0IaaGymaaGaayjkaiaawMcaaiaac+ca caWGmbWaa0baaSqaaiaadwgaaeaacaaIYaaaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabmytayaagaWaa0ba aSqaaiabeI7aXbqaaiaaikdaaaGccqGH9aqpdaqadaqaaiaaiodacq aH+oaEcqGHRaWkcaaIXaaacaGLOaGaayzkaaGaai4laiaadYeadaqh aaWcbaGaamyzaaqaaiaaikdaaaaaaaa@099A@

The bending moment, twisting moment and axial force can then be calculated as

M 1 M 2 M 3 T 3 T =D κ 1 , κ 2 , κ 3 , ε 33 T D= E I 11 E I 12 0 0 E I 12 E I 22 0 0 0 0 μ I 33 0 0 0 0 EA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWadaqaauaabeqabqaaaaqaai aad2eadaWgaaWcbaGaaGymaaqabaGccaaMi8oabaGaamytamaaBaaa leaacaaIYaaabeaaaOqaaiaad2eadaWgaaWcbaGaaG4maaqabaaake aacaWGubWaaSbaaSqaaiaaiodaaeqaaaaaaOGaay5waiaaw2faamaa CaaaleqabaGaamivaaaakiabg2da9iaahseadaWadaqaaiabeQ7aRn aaBaaaleaacaaIXaaabeaakiaacYcacqaH6oWAdaWgaaWcbaGaaGOm aaqabaGccaGGSaGaeqOUdS2aaSbaaSqaaiaaiodaaeqaaOGaaiilai abew7aLnaaBaaaleaacaaIZaGaaG4maaqabaaakiaawUfacaGLDbaa daahaaWcbeqaaiaadsfaaaaakeaacaWHebGaeyypa0ZaamWaaeaafa qabeabeaaaaaqaaiaadweacaWGjbWaaSbaaSqaaiaaigdacaaIXaaa beaaaOqaaiabgkHiTiaadweacaWGjbWaaSbaaSqaaiaaigdacaaIYa aabeaaaOqaaiaaicdaaeaacaaIWaaabaGaeyOeI0IaamyraiaadMea daWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaamyraiaadMeadaWgaa WcbaGaaGOmaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiabeY7aTjaadMeadaWgaaWcbaGaaG4maiaaio daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaadweacaWGbbaaaaGaay5waiaaw2faaaaaaa@6EA6@

Finally, in many applications (particularly those involving several beams welded together to create a structure) it is convenient to solve for displacement and rotation components in a global {i,j,k} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahMgacaGGSaGaaCOAaiaacY cacaWHRbGaaiyFaaaa@3719@  basis, instead of using the components in the { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  basis, which would differ for each beam.   This can be accomplished by defining a basis change matrix

Ω= R 0 0 0 0 R 0 0 0 0 R 0 0 0 0 R R= e 1 e 2 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyQdiabg2da9maadmaabaqbaeqabq abaaaaaeaacaWHsbaabaGaaCimaaqaaiaahcdaaeaacaWHWaaabaGa aCimaaqaaiaahkfaaeaacaWHWaaabaGaaCimaaqaaiaahcdaaeaaca WHWaaabaGaaCOuaaqaaiaahcdaaeaacaWHWaaabaGaaCimaaqaaiaa hcdaaeaacaWHsbaaaaGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaahkfacqGH9aqpdaWadaqaauaabe qadeaaaeaacaWHLbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaCyzamaa BaaaleaacaaIYaaabeaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqaba aaaaGccaGLBbGaayzxaaaaaa@61EC@

where 0 represents a 3x3 null matrix, and e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaki aacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaahwgadaWg aaWcbaGaaG4maaqabaaaaa@37D6@  represents the components of these vectors in the global {i,j,k} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahMgacaGGSaGaaCOAaiaacY cacaWHRbGaaiyFaaaa@3719@  basis.

 

With these definitions, the principle of virtual work reduces to a system of linear equations

KU=FK= elements k el F= nodes f n + elements r el MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4saiaahwfacqGH9aqpcaWHgbGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaC4saiabg2da9maaqafabaGa aC4AamaaBaaaleaacaWGLbGaamiBaaqabaGccaaMc8UaaGPaVlaayk W7aSqaaiaadwgacaWGSbGaamyzaiaad2gacaWGLbGaamOBaiaadsha caWGZbaabeqdcqGHris5aOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaahAeacqGH9aqpdaaeqbqaaiaahAgada WgaaWcbaGaamOBaaqabaGccaaMc8UaaGPaVlaaykW7aSqaaiaad6ga caWGVbGaamizaiaadwgacaWGZbaabeqdcqGHris5aOGaey4kaSYaaa buaeaacaWHYbWaaSbaaSqaaiaadwgacaWGSbaabeaakiaaykW7caaM c8UaaGPaVdWcbaGaamyzaiaadYgacaWGLbGaamyBaiaadwgacaWGUb GaamiDaiaadohaaeqaniabggHiLdaaaa@A254@

where U is a vector of unknown nodal displacements and rotations (as components in the  {i,j,k} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahMgacaGGSaGaaCOAaiaacY cacaWHRbGaaiyFaaaa@3719@  basis), F is a vector of nodal forces and moments, and

k el = 0 L e Ω T B T DBΩd x 3 L e 2 i Ω T B T ( ξ i )DB( ξ i )Ω w i r el = 0 L e Ω T N T Ωpd x 3 L e 2 i Ω T N T ( ξ i )Ωp w i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHRbWaaSbaaSqaaiaadwgaca WGSbaabeaakiabg2da9maapehabaGaaCyQdmaaCaaaleqabaGaamiv aaaakiaahkeadaahaaWcbeqaaiaadsfaaaGccaWHebGaaCOqaiaahM 6acaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaeaacaaIWaaabaGa amitamaaBaaameaacaWGLbaabeaaa0Gaey4kIipakiabgIKi7oaala aabaGaamitamaaBaaaleaacaWGLbaabeaaaOqaaiaaikdaaaWaaabu aeaacaWHPoWaaWbaaSqabeaacaWGubaaaOGaaCOqamaaCaaaleqaba GaamivaaaakiaacIcacqaH+oaEdaWgaaWcbaGaamyAaaqabaGccaGG PaGaaCiraiaahkeacaGGOaGaeqOVdG3aaSbaaSqaaiaadMgaaeqaaO GaaiykaiaahM6acaWG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMga aeqaniabggHiLdaakeaacaWHYbWaaSbaaSqaaiaadwgacaWGSbaabe aakiabg2da9maapehabaGaaCyQdmaaCaaaleqabaGaamivaaaakiaa h6eadaahaaWcbeqaaiaadsfaaaGccaWHPoGaaCiCaiaadsgacaWG4b WaaSbaaSqaaiaaiodaaeqaaaqaaiaaicdaaeaacaWGmbWaaSbaaWqa aiaadwgaaeqaaaqdcqGHRiI8aOGaeyisIS7aaSaaaeaacaWGmbWaaS baaSqaaiaadwgaaeqaaaGcbaGaaGOmaaaadaaeqbqaaiaahM6adaah aaWcbeqaaiaadsfaaaGccaWHobWaaWbaaSqabeaacaWGubaaaOGaai ikaiabe67a4naaBaaaleaacaWGPbaabeaakiaacMcacaWHPoGaaCiC aiaadEhadaWgaaWcbaGaamyAaaqabaaabaGaamyAaaqab0GaeyyeIu oaaaaa@8322@

are the element stiffness matrix and force vector, with ξ i , w i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdG3aaSbaaSqaaiaadMgaaeqaaO GaaiilaiaadEhadaWgaaWcbaGaamyAaaqabaaaaa@368D@  the coordinates and weights for a 2 point Gauss integration scheme ( ξ 1 =1/ 3 , ξ 2 =1/ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaeyOeI0IaaGymaiaac+cadaGcaaqaaiaaiodaaSqabaGc caGGSaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGymai aac+cadaGcaaqaaiaaiodaaSqabaaaaa@3E88@  and w 1 = w 2 =1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4DamaaBaaaleaacaaIXaaabeaaki abg2da9iaadEhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaIXaaa aa@3782@  ).

 

 

 

Finite element method for elastic Timoshenko beams: The principle of virtual work for the Timoshenko beam consist of two coupled virtual work equations for the unknown displacement and rotation of transverse cross-sections of the beam.    The two are independent variables, so

 

1. There is no need to ensure that the rotation are related by a compatibility constraint;

 

2. The displacement and rotation must be continuous across element boundaries, but there is no need for continuity of the derivative of the displacement.

 

This means that standard linear or quadratic interpolation functions can be used to approximate their variations within an element.  Higher order interpolation schemes can also be found in the literature.

 

To proceed with the finite element formulation, it is helpful to combine the two virtual work equations for the Timoshenko beam into a single, symmetric form.   For this purpose we define a shear/axial strain vector

γ= du d x 3 + e 3 ×θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Sdiabg2da9maalaaabaGaamizai aahwhaaeaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaGccqGH RaWkcaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaey41aqRaaCiUdaaa@3E12@

Adding the two virtual work equations then yields

0 L M dδθ d x 3 d x 3 + 0 L Tδγd x 3 = 0 L p δud x 3 + P (L) δu(L) + P (0) δu(0)+ Q (L) δθ(L)+ Q (0) δθ(0) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaaMc8+aa8qCaeaacaWHnbGaey yXIC9aaSaaaeaacaWGKbGaeqiTdqMaaCiUdaqaaiaadsgacaWG4bWa aSbaaSqaaiaaiodaaeqaaaaaaeaacaaIWaaabaGaamitaaqdcqGHRi I8aOGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkdaWd XbqaaiaahsfacqGHflY1cqaH0oazcaWHZoGaamizaiaadIhadaWgaa WcbaGaaG4maaqabaaabaGaaGimaaqaaiaadYeaa0Gaey4kIipakiab g2da9maapehabaGaaCiCaaWcbaGaaGimaaqaaiaadYeaa0Gaey4kIi pakiabgwSixlabes7aKjaahwhacaWGKbGaamiEamaaBaaaleaacaaI ZaaabeaakiabgUcaRiaahcfadaahaaWcbeqaaiaacIcacaWGmbGaai ykaaaakiabgwSixlabes7aKjaahwhacaGGOaGaamitaiaacMcaaeaa caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGHRaWkcaWHqbWaaWbaaSqabeaacaGGOaGaaGimaiaacM caaaGccqGHflY1cqaH0oazcaWH1bGaaiikaiaaicdacaGGPaGaey4k aSIaaCyuamaaCaaaleqabaGaaiikaiaadYeacaGGPaaaaOGaeyyXIC TaeqiTdqMaaCiUdiaacIcacaWGmbGaaiykaiabgUcaRiaahgfadaah aaWcbeqaaiaacIcacaaIWaGaaiykaaaakiabgwSixlabes7aKjaahI 7acaGGOaGaaGimaiaacMcaaaaa@F155@

This must hold for all admissible variations of δu,δθ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCyDaiaacYcacqaH0oazca WH4oaaaa@371C@ .

 

As before, the finite element version of the virtual work principle is derived by dividing the beam into a series of elements bounded by nodes, as shown in the figure.   The unknowns in the finite element solution are the three components of displacement, and the three components of rotation, at each node that is adjacent to two neighboring elements. We will again set up a scheme that allows the displacement and rotation components to be expressed in an arbitrary {i,j,k} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahMgacaGGSaGaaCOAaiaacY cacaWHRbGaaiyFaaaa@3719@  basis (which allows the beam to have any orientation in space), but begin by assuming that we wish to solve for their components in the { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaCyzamaaBaaaleaacaaIYaaabeaakiaacYcacaWH LbWaaSbaaSqaaiaaiodaaeqaaOGaaiyFaaaa@39E0@  basis aligned with the beam.

 

The displacement and rotation of the beam may be interpolated linearly between the nodes as follows

u 1 u 2 u 3 θ 1 θ 2 θ 3 T = N u 1 1 u 2 1 u 3 1 θ 1 1 θ 2 1 θ 3 1 u 1 2 u 2 2 u 3 2 θ 1 2 θ 2 2 θ 3 2 T N= N 1 0 0 0 0 0 N 2 0 0 0 0 0 0 N 1 0 0 0 0 0 N 2 0 0 0 0 0 0 N 1 0 0 0 0 0 N 2 0 0 0 0 0 0 N 1 0 0 0 0 0 N 2 0 0 0 0 0 0 N 1 0 0 0 0 0 N 2 0 0 0 0 0 0 N 1 0 0 0 0 0 N 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWadaqaauaabeqabyaaaaqaai aadwhadaWgaaWcbaGaaGymaaqabaaakeaacaWG1bWaaSbaaSqaaiaa ikdaaeqaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabeI 7aXnaaBaaaleaacaaIXaaabeaaaOqaaiabeI7aXnaaBaaaleaacaaI YaaabeaaaOqaaiabeI7aXnaaBaaaleaacaaIZaaabeaaaaaakiaawU facaGLDbaadaahaaWcbeqaaiaadsfaaaGccqGH9aqpaeaacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaC OtamaadmaabaqbaeqabeadaaaaaaqaaiaadwhadaqhaaWcbaGaaGym aaqaaiaaigdaaaaakeaacaWG1bWaa0baaSqaaiaaikdaaeaacaaIXa aaaaGcbaGaamyDamaaDaaaleaacaaIZaaabaGaaGymaaaaaOqaaiab eI7aXnaaDaaaleaacaaIXaaabaGaaGymaaaaaOqaaiabeI7aXnaaDa aaleaacaaIYaaabaGaaGymaaaaaOqaaiabeI7aXnaaDaaaleaacaaI ZaaabaGaaGymaaaaaOqaaiaadwhadaqhaaWcbaGaaGymaaqaaiaaik daaaaakeaacaWG1bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcbaGa amyDamaaDaaaleaacaaIZaaabaGaaGOmaaaaaOqaaiabeI7aXnaaDa aaleaacaaIXaaabaGaaGOmaaaaaOqaaiabeI7aXnaaDaaaleaacaaI YaaabaGaaGOmaaaaaOqaaiabeI7aXnaaDaaaleaacaaIZaaabaGaaG OmaaaaaaaakiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaaakeaa caWHobGaeyypa0ZaamWaaeaafaqabeGbmaaaaaaaaeaacaWGobWaaS baaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacaWGobWaaSbaaSqaaiaaikdaaeqaaa GcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaaIWaaabaGaamOtamaaBaaaleaacaaIXaaabeaaaOqaaiaaic daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaamOt amaaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaad6eadaWgaaWc baGaaGymaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaad6eadaWgaaWcbaGaaGOmaaqabaaakeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacaWGobWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGobWaaS baaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaamOtamaaBaaaleaaca aIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaaIWaaabaGaamOtamaaBaaaleaacaaIYaaabeaaaOqaaiaaic daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiaad6eadaWgaaWcbaGaaGymaaqabaaakeaacaaIWaaabaGaaG imaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaad6eadaWgaaWc baGaaGOmaaqabaaaaaGccaGLBbGaayzxaaaaaaa@D69A@

Where

N 1 =(1ξ)/2 N 2 =(1+ξ)/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOtamaaBaaaleaacaaIXaaabeaaki abg2da9iaacIcacaaIXaGaeyOeI0IaeqOVdGNaaiykaiaac+cacaaI YaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaad6eadaWgaaWcbaGa aGOmaaqabaGccqGH9aqpcaGGOaGaaGymaiabgUcaRiabe67a4jaacM cacaGGVaGaaGOmaaaa@56DF@

The curvature and shear/axial strain vectors can then be calculated using

 


The internal forces and moments follow as

T 1 T 2 T 3 M 1 M 2 M 3 T =D γ 1 γ 2 γ 3 κ 1 κ 2 κ 3 T D= βAμ 0 0 0 0 0 0 βAμ 0 0 0 0 0 0 EA 0 0 0 0 0 0 E I 11 E I 12 0 0 0 0 E I 12 E I 22 0 0 0 0 0 0 μ I 33 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWadaqaauaabeqabyaaaaqaai aadsfadaWgaaWcbaGaaGymaaqabaaakeaacaWGubWaaSbaaSqaaiaa ikdaaeqaaaGcbaGaamivamaaBaaaleaacaaIZaaabeaaaOqaaiaad2 eadaWgaaWcbaGaaGymaaqabaaakeaacaWGnbWaaSbaaSqaaiaaikda aeqaaaGcbaGaamytamaaBaaaleaacaaIZaaabeaaaaaakiaawUfaca GLDbaadaahaaWcbeqaaiaadsfaaaGccqGH9aqpcaWHebWaamWaaeaa faqabeqagaaaaeaacqaHZoWzdaWgaaWcbaGaaGymaaqabaaakeaacq aHZoWzdaWgaaWcbaGaaGOmaaqabaaakeaacqaHZoWzdaWgaaWcbaGa aG4maaqabaaakeaacqaH6oWAdaWgaaWcbaGaaGymaaqabaaakeaacq aH6oWAdaWgaaWcbaGaaGOmaaqabaaakeaacqaH6oWAdaWgaaWcbaGa aG4maaqabaaaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaa GcbaGaaCiraiabg2da9maadmaabaqbaeqabyGbaaaaaeaacqaHYoGy caWGbbGaeqiVd0gabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiaaicdaaeaacaaIWaaabaGaeqOSdiMaamyqaiabeY7aTbqa aiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaadweacaWGbbaabaGaaGimaaqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaamyraiaadMeada WgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaeyOeI0IaamyraiaadMea daWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiabgkHiTiaadweacaWGjbWaaSbaaSqa aiaaigdacaaIYaaabeaaaOqaaiaadweacaWGjbWaaSbaaSqaaiaaik dacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiabeY7aTjaadMeadaWgaaWcba GaaG4maiaaiodaaeqaaaaaaOGaay5waiaaw2faaaaaaa@888C@

 

Finally, to re-write the finite element equations in terms of displacement and rotation components in a global {i,j,k} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahMgacaGGSaGaaCOAaiaacY cacaWHRbGaaiyFaaaa@3719@  basis we once again define thebasis change matrix

Ω= R 0 0 0 0 R 0 0 0 0 R 0 0 0 0 R R= e 1 e 2 e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyQdiabg2da9maadmaabaqbaeqabq abaaaaaeaacaWHsbaabaGaaCimaaqaaiaahcdaaeaacaWHWaaabaGa aCimaaqaaiaahkfaaeaacaWHWaaabaGaaCimaaqaaiaahcdaaeaaca WHWaaabaGaaCOuaaqaaiaahcdaaeaacaWHWaaabaGaaCimaaqaaiaa hcdaaeaacaWHsbaaaaGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaahkfacqGH9aqpdaWadaqaauaabe qadeaaaeaacaWHLbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaCyzamaa BaaaleaacaaIYaaabeaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqaba aaaaGccaGLBbGaayzxaaaaaa@61EC@

where 0 represents a 3x3 null matrix, and e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaki aacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaahwgadaWg aaWcbaGaaG4maaqabaaaaa@37D6@  represents the components of these vectors in the global {i,j,k} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahMgacaGGSaGaaCOAaiaacY cacaWHRbGaaiyFaaaa@3719@  basis.

 

With these definitions, the principle of virtual work reduces to a system of linear equations

KU=FK= elements k el F= nodes f n + elements r el MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4saiaahwfacqGH9aqpcaWHgbGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaC4saiabg2da9maaqafabaGa aC4AamaaBaaaleaacaWGLbGaamiBaaqabaGccaaMc8UaaGPaVlaayk W7aSqaaiaadwgacaWGSbGaamyzaiaad2gacaWGLbGaamOBaiaadsha caWGZbaabeqdcqGHris5aOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaahAeacqGH9aqpdaaeqbqaaiaahAgada WgaaWcbaGaamOBaaqabaGccaaMc8UaaGPaVlaaykW7aSqaaiaad6ga caWGVbGaamizaiaadwgacaWGZbaabeqdcqGHris5aOGaey4kaSYaaa buaeaacaWHYbWaaSbaaSqaaiaadwgacaWGSbaabeaakiaaykW7caaM c8UaaGPaVdWcbaGaamyzaiaadYgacaWGLbGaamyBaiaadwgacaWGUb GaamiDaiaadohaaeqaniabggHiLdaaaa@A254@

where U is a vector of unknown nodal displacements and rotations (as components in the  {i,j,k} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahMgacaGGSaGaaCOAaiaacY cacaWHRbGaaiyFaaaa@3719@  basis), F is a vector of nodal forces and moments, and

k el = 0 L e Ω T B T DBΩd x 3 L e Ω T B T (0)DB(0)Ω r el = 0 L e Ω T N T Ωpd x 3 L e Ω T N T (0)Ωp MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHRbWaaSbaaSqaaiaadwgaca WGSbaabeaakiabg2da9maapehabaGaaCyQdmaaCaaaleqabaGaamiv aaaakiaahkeadaahaaWcbeqaaiaadsfaaaGccaWHebGaaCOqaiaahM 6acaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaeaacaaIWaaabaGa amitamaaBaaameaacaWGLbaabeaaa0Gaey4kIipakiabgIKi7kaadY eadaWgaaWcbaGaamyzaaqabaGccaWHPoWaaWbaaSqabeaacaWGubaa aOGaaCOqamaaCaaaleqabaGaamivaaaakiaacIcacaaIWaGaaiykai aahseacaWHcbGaaiikaiaaicdacaGGPaGaaCyQdaqaaiaahkhadaWg aaWcbaGaamyzaiaadYgaaeqaaOGaeyypa0Zaa8qCaeaacaWHPoWaaW baaSqabeaacaWGubaaaOGaaCOtamaaCaaaleqabaGaamivaaaakiaa hM6acaWHWbGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaabaGaaG imaaqaaiaadYeadaWgaaadbaGaamyzaaqabaaaniabgUIiYdGccqGH ijYUcaWGmbWaaSbaaSqaaiaadwgaaeqaaOGaaCyQdmaaCaaaleqaba Gaamivaaaakiaah6eadaahaaWcbeqaaiaadsfaaaGccaGGOaGaaGim aiaacMcacaWHPoGaaCiCaaaaaa@70C1@

are the element stiffness matrix and force vector.  The integrals have been evaluated with a 1-point Gaussian quadrature scheme, in which the integrand is calculated at ξ=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdGNaeyypa0JaaGimaaaa@3463@ , and the integration weight is w=1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Daiabg2da9iaaigdaaaa@339D@ .   A higher order integration scheme cannot be used, because it causes the element to ‘lock,’ causing a spuriously high element stiffness matrix.  This is particularly a problem in long, slender beams with little shear deformation.

 


Example: A simple demonstration of both the Euler-Bernoulli and Timoshenko beam elements are shown in the figure.  Fig. (a) compares the predictions of the Euler-Bernoulli beam element for the deflection and rotation of an end-loaded cantilever beam with the exact solution.  The FEA predictions are within 0.1% of the exact result with only 10 elements along the length of the beam.   Fig. (b) shows the predicted deflection of an end loaded Timoshenko beam, for several values of the normalized ratio of bending to shear stiffness EI/(βμA L 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadMeacaGGVaGaaiikaiabek 7aIjabeY7aTjaadgeacaWGmbWaaWbaaSqabeaacaaIYaaaaOGaaiyk aaaa@3A65@ .   For EI/(βμA L 2 )0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadMeacaGGVaGaaiikaiabek 7aIjabeY7aTjaadgeacaWGmbWaaWbaaSqabeaacaaIYaaaaOGaaiyk aiabgkziUkaaicdaaaa@3D0C@  the Timoshenko elements converge to the limit of the Euler-Bernoulli beam.   As EI/(βμA L 2 )>0.02 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadMeacaGGVaGaaiikaiabek 7aIjabeY7aTjaadgeacaWGmbWaaWbaaSqabeaacaaIYaaaaOGaaiyk aiabg6da+iaaicdacaGGUaGaaGimaiaaikdaaaa@3E4F@  shear deformation in the beam becomes significant, and the Timoshenko elements predict a significantly larger deflection than Euler-Bernoulli theory.

 

The codes that plot these graphs are provided in the files named FEM_beam_Euler.m and FEM_beam_Timoshenko.m at

https://github.com/albower/Applied_Mechanics_of_Solids/

 

 

 

8.7.3 Plate Elements.

 

We next consider simplified solid mechanics theories that describe motion of flat plates.   The figure shows the problem to be solved.  Our goal is to calculate the deflections and forces in a plate that is subjected to transverse forces on its surface, and either supported or clamped on its edge, or subjected to in-plane or transverse forces around its circumference.   To keep the discussion (reasonably) simple here, we will assume

 

· The solid is a flat plate, with a uniform thickness h (in more sophistication FEA analysis, plates can be curved - then they are called shells -  and the thickness can vary)

 

· Deflections are small, and the plate remains elastic.

 

· The plate is oriented so that the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction is normal to the undeformed mid-section of the plate.   In more complex FEA simulations the plate may have an arbitrary orientation: in this case the element stiffness matrices for the plate are first formulated using a local coordinate system with e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  normal to the plate, and then transformed to a global coordinate frame.   The procedure was discussed in Section 8.7.2 for beams, but to keep things brief will not be repeated in this section.

 

 

Summary of plate theory: Plate theory is discussed in (tedious) detail in Chapter 10, but to understand how to solve the equations using the finite element method, only a short summary is needed. 

 

The deformed shape of a flat plate is described by specifying the displacement u( x 1 , x 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDaiaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGG Paaaaa@37C4@  of each point on the mid-section of the plate as a function of position. 

 

It is also necessary to calculate the (small) rotation of the planes normal to the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B5@  and e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B6@  directions in the undeformed plate.   The rotation is quantified by a small rotation vector θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiUdaaa@3224@ , using one of two different approaches:

 

1. Kirchhoff plate theory is an approximate theory (analogous to the Euler-Bernoulli beam), which is intended to model plates that are thinner than 1/10th of their in-plane dimensions.  It assumes that planes transverse to the mid-plane of the plate remain transverse after deformation.   In this case, the rotation is related to the out-of-plane deflection of the plate by

θ 1 = d u 3 d x 2 θ 2 = d u 3 d x 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0ZaaSaaaeaacaWGKbGaamyDamaaBaaaleaacaaIZaaabeaa aOqaaiaadsgacaWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaeqiUde3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0Jaey OeI0YaaSaaaeaacaWGKbGaamyDamaaBaaaleaacaaIZaaabeaaaOqa aiaadsgacaWG4bWaaSbaaSqaaiaaigdaaeqaaaaaaaa@5592@

These angles represent the small rotation of a line that is transverse to the mid-plane of the undeformed plate.  They are components of a vector, and are related to the transverse displacement by θ= e 3 × u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiUdiabg2da9iabgkHiTiaahwgada WgaaWcbaGaaG4maaqabaGccqGHxdaTcqGHhis0caWG1bWaaSbaaSqa aiaaiodaaeqaaaaa@3B78@ .

 

2. Reissner-Mindlin plate theory is a more complicated version, which allows the transverse planes to rotate relative to the mid-plane of the plate.   The rotation is then an independent variable, which must be calculated as part of the solution.

 

In both theories, the curvature of the plate is defined as

κ 11 = d θ 2 d x 1 κ 12 = d θ 1 d x 1 κ 21 = d θ 2 d x 2 κ 22 = d θ 1 d x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9maalaaabaGaamizaiabeI7aXnaaBaaaleaacaaI YaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaigdaaeqaaaaaki aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua eqOUdS2aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iabgkHiTm aalaaabaGaamizaiabeI7aXnaaBaaaleaacaaIXaaabeaaaOqaaiaa dsgacaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH 6oWAdaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaaca WGKbGaeqiUde3aaSbaaSqaaiaaikdaaeqaaaGcbaGaamizaiaadIha daWgaaWcbaGaaGOmaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlabeQ7aRnaaBaaaleaacaaIYaGaaGOmaaqa baGccqGH9aqpcqGHsisldaWcaaqaaiaadsgacqaH4oqCdaWgaaWcba GaaGymaaqabaaakeaacaWGKbGaamiEamaaBaaaleaacaaIYaaabeaa aaaaaa@84B7@

The curvature is a (2D) tensor, and is related to the rotation vector by κ= e 3 ×θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOUdiabg2da9iabgkHiTiabgEGirp aabmaabaGaaCyzamaaBaaaleaacaaIZaaabeaakiabgEna0kaahI7a aiaawIcacaGLPaaaaaa@3C64@  

 

The strain distribution in the plate is then

ε αβ = 1 2 u α x β + u β x α + x 3 κ αβ + κ βα MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiabeg7aHjabek 7aIbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaa baWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiabeg7aHbqabaaake aacqGHciITcaWG4bWaaSbaaSqaaiabek7aIbqabaaaaOGaey4kaSYa aSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiabek7aIbqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiabeg7aHbqabaaaaOGaey4kaSIaamiE amaaBaaaleaacaaIZaaabeaakmaabmaabaGaeqOUdS2aaSbaaSqaai abeg7aHjabek7aIbqabaGccqGHRaWkcqaH6oWAdaWgaaWcbaGaeqOS diMaeqySdegabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@5B80@

where the Greek indices have values 1 or 2.

 

The plate is in a state of plane stress, with internal stresses

MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcaa@30DF@   σ 11 σ 22 σ 12 = E (1 ν 2 ) 1 ν 0 ν 1 0 0 0 (1ν)/2 ε 11 ε 22 2 ε 12 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeWabaaabaGaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabeo8aZnaaBaaaleaa caaIYaGaaGOmaaqabaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaik daaeqaaaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaamyraaqa aiaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaO GaaiykaaaadaWadaqaauaabeqadmaaaeaacaaIXaaabaGaeqyVd4ga baGaaGimaaqaaiabe27aUbqaaiaaigdaaeaacaaIWaaabaGaaGimaa qaaiaaicdaaeaacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacaGG VaGaaGOmaaaaaiaawUfacaGLDbaadaWadaqaauaabeqadeaaaeaacq aH1oqzdaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaeqyTdu2aaSba aSqaaiaaikdacaaIYaaabeaaaOqaaiaaikdacqaH1oqzdaWgaaWcba GaaGymaiaaikdaaeqaaaaaaOGaay5waiaaw2faaaaa@6175@

Reissner-Mindlin plate theory also accounts approximately for the effects of the transverse shear stress components σ 31 , σ 32 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIXa aabeaakiaacYcacqaHdpWCdaWgaaWcbaGaaG4maiaaikdaaeqaaaaa @3869@ , but these cannot be calculated directly from the strain field

 

A plate may be loaded by subjecting its edge to a force P MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaaaa@31B9@  per unit length or moment Q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyuaaaa@31BA@  per unit length.  Alternatively, one or more components of displacement or rotation may be prescribed.  In addition, a distributed force per unit area p(x) e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiaacIcacaWH4bGaaiykaiaahw gadaWgaaWcbaGaaG4maaqabaaaaa@3606@  may act perpendicular to surface of the plate.

 


The forces in a plate are quantified by internal force and moment tensors acting on each cross-section.  To make this precise, cut a square element from the plate with planes normal to the coordinate axes as shown in the figure.  A set of resultant forces and moments act on the exposed faces:

 

· The moments M ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33BB@  are defined by

M 11 = h/2 h/2 σ 11 x 3 d x 3 M 12 = M 21 = h/2 h/2 σ 12 x 3 d x 3 M 22 = h/2 h/2 σ 22 x 3 d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpdaWdXbqaaiabeo8aZnaaBaaaleaacaaIXaGaaGym aaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaamizaiaadIhada WgaaWcbaGaaG4maaqabaaabaGaeyOeI0IaamiAaiaac+cacaaIYaaa baGaamiAaiaac+cacaaIYaaaniabgUIiYdGccaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaamytamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqpcaWGnbWa aSbaaSqaaiaaikdacaaIXaaabeaakiabg2da9maapehabaGaeq4Wdm 3aaSbaaSqaaiaaigdacaaIYaaabeaakiaadIhadaWgaaWcbaGaaG4m aaqabaGccaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaeaacqGHsi slcaWGObGaai4laiaaikdaaeaacaWGObGaai4laiaaikdaa0Gaey4k IipakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam ytamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH9aqpdaWdXbqaaiab eo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccaWG4bWaaSbaaSqaai aaiodaaeqaaOGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaabaGa eyOeI0IaamiAaiaac+cacaaIYaaabaGaamiAaiaac+cacaaIYaaani abgUIiYdaaaa@B06C@  

The physical significance of the components M ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33BB@  is illustrated in the figure: M 1j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIXaGaamOAaa qabaaaaa@3388@  characterizes the moment per unit length acting on planes inside the shell that are normal to the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B5@  direction, while M 2j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaaIYaGaamOAaa qabaaaaa@3389@  characterizes the moment per unit length acting on planes that are normal to e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B6@ .  Note that M i1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaWGPbGaaGymaa qabaaaaa@3387@  represents a moment about the e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B6@  axis, while M i2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaBaaaleaacaWGPbGaaGOmaa qabaaaaa@3388@  is a moment acting about the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0IaaCyzamaaBaaaleaacaaIXa aabeaaaaa@33A2@  axis. This can be expressed mathematically as M= M αβ e α ( e 3 × e β ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCytaiabg2da9iaad2eadaWgaaWcba GaeqySdeMaeqOSdigabeaakiaahwgadaWgaaWcbaGaeqySdegabeaa kiabgEPielaacIcacaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaey41aq RaaCyzamaaBaaaleaacqaHYoGyaeqaaOGaaiykaaaa@43E6@  where the repeated indices α,β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySdeMaaiilaiabek7aIbaa@34D0@  are summed over 1 and 2, but this expression is only helpful if you are really good at visualizing dyadic and cross products.

 

· The in-plane forces T ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33C2@  are defined by

T 11 = h/2 h/2 σ 11 d x 3 T 12 = T 21 = h/2 h/2 σ 12 d x 3 T 22 = h/2 h/2 σ 22 d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpdaWdXbqaaiabeo8aZnaaBaaaleaacaaIXaGaaGym aaqabaGccaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaeaacqGHsi slcaWGObGaai4laiaaikdaaeaacaWGObGaai4laiaaikdaa0Gaey4k IipakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caWGubWaaSbaaSqaaiaaigdacaaIYaaabeaa kiabg2da9iaadsfadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaeyypa0 Zaa8qCaeaacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaamiz aiaadIhadaWgaaWcbaGaaG4maaqabaaabaGaeyOeI0IaamiAaiaac+ cacaaIYaaabaGaamiAaiaac+cacaaIYaaaniabgUIiYdGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caWGubWaaSbaaSqaaiaaikdacaaIYaaabeaa kiabg2da9maapehabaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabe aakiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaqaaiabgkHiTiaa dIgacaGGVaGaaGOmaaqaaiaadIgacaGGVaGaaGOmaaqdcqGHRiI8aa aa@8BDC@

They represent resultant forces exerted by stresses on the internal planes: T 1j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIXaGaamOAaa qabaaaaa@338F@  are the components of force acting on the plane perpendicular to the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B5@  direction, while T 2j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIYaGaamOAaa qabaaaaa@3390@  are those acting on the plane perpendicular to the e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B6@  direction. 

  

· The transverse forces V 1 , V 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaaki aacYcacaWGwbWaaSbaaSqaaiaaikdaaeqaaaaa@351F@  represent forces acting in the e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIZaaabeaaaa a@32B7@  direction on planes perpendicular to the e 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIXaaabeaaaa a@32B5@  and e 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyzamaaBaaaleaacaaIYaaabeaaaa a@32B6@  direction, respectively.   In Kirchhoff theory they are constraint forces and must be calculated from the equilibrium equation.   In an exact version of Reissner-Mindlin theory they would be related to the shear stresses acting on transverse planes by

 

V 1 = h/2 h/2 σ 31 d x 3 V 2 = h/2 h/2 σ 32 d x 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaaIXaaabeaaki abg2da9maapehabaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIXaaabeaa kiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaqaaiabgkHiTiaadI gacaGGVaGaaGOmaaqaaiaadIgacaGGVaGaaGOmaaqdcqGHRiI8aOGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa dAfadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWdXbqaaiabeo8aZn aaBaaaleaacaaIZaGaaGOmaaqabaGccaWGKbGaamiEamaaBaaaleaa caaIZaaabeaaaeaacqGHsislcaWGObGaai4laiaaikdaaeaacaWGOb Gaai4laiaaikdaa0Gaey4kIipaaaa@6BC6@

but the theory is approximate, so the transverse forces are calculated instead through the rotation of the cross-section, using the expressions given below.

 

 

The internal forces are related to the displacement and curvature of the mid-plane of the plate by

T 11 T 22 T 12 = Eh (1 ν 2 ) 1 ν 0 ν 1 0 0 0 (1ν)/2 u 1 / x 1 u 2 / x 2 ( u 1 / x 2 + u 2 / x 1 ) M 11 M 22 M 12 = E h 3 12(1 ν 2 ) 1 ν 0 ν 1 0 0 0 (1ν)/2 κ 11 κ 22 κ 12 + κ 21 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWadaqaauaabeqadeaaaeaaca WGubWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaadsfadaWgaaWc baGaaGOmaiaaikdaaeqaaaGcbaGaamivamaaBaaaleaacaaIXaGaaG OmaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaSaaaeaacaWGfbGa amiAaaqaaiaacIcacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaaca aIYaaaaOGaaiykaaaadaWadaqaauaabeqadmaaaeaacaaIXaaabaGa eqyVd4gabaGaaGimaaqaaiabe27aUbqaaiaaigdaaeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacaGGOaGaaGymaiabgkHiTiabe27aUjaa cMcacaGGVaGaaGOmaaaaaiaawUfacaGLDbaadaWadaqaauaabeqade aaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaai4laiab gkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG1b WaaSbaaSqaaiaaikdaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWc baGaaGOmaaqabaaakeaacaGGOaGaeyOaIyRaamyDamaaBaaaleaaca aIXaaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqa aOGaey4kaSIaeyOaIyRaamyDamaaBaaaleaacaaIYaaabeaakiaac+ cacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaaaaiaa wUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7aeaadaWadaqaauaabeqadeaaaeaacaWGnbWa aSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaad2eadaWgaaWcbaGaaG OmaiaaikdaaeqaaaGcbaGaamytamaaBaaaleaacaaIXaGaaGOmaaqa baaaaaGccaGLBbGaayzxaaGaeyypa0ZaaSaaaeaacaWGfbGaamiAam aaCaaaleqabaGaaG4maaaaaOqaaiaaigdacaaIYaGaaiikaiaaigda cqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaaGccaGGPaaaamaadm aabaqbaeqabmWaaaqaaiaaigdaaeaacqaH9oGBaeaacaaIWaaabaGa eqyVd4gabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aacIcacaaIXaGaeyOeI0IaeqyVd4Maaiykaiaac+cacaaIYaaaaaGa ay5waiaaw2faamaadmaabaqbaeqabmqaaaqaaiabeQ7aRnaaBaaale aacaaIXaGaaGymaaqabaaakeaacqaH6oWAdaWgaaWcbaGaaGOmaiaa ikdaaeqaaaGcbaGaeqOUdS2aaSbaaSqaaiaaigdacaaIYaaabeaaki abgUcaRiabeQ7aRnaaBaaaleaacaaIYaGaaGymaaqabaaaaaGccaGL BbGaayzxaaaaaaa@B735@

 

In Reissner-Mindlin theory, the transverse shear forces are related to the displacement and rotation by

V 1 V 2 =2βhμ u 3 / x 1 + θ 2 u 3 / x 2 θ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeGabaaabaGaamOvam aaBaaaleaacaaIXaaabeaaaOqaaiaadAfadaWgaaWcbaGaaGOmaaqa baaaaaGccaGLBbGaayzxaaGaeyypa0JaaGOmaiabek7aIjaadIgacq aH8oqBdaWadaqaauaabeqaceaaaeaacqGHciITcaWG1bWaaSbaaSqa aiaaiodaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaaGymaa qabaGccqGHRaWkcqaH4oqCdaWgaaWcbaGaaGOmaaqabaaakeaacqGH ciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaOGaai4laiabgkGi2kaadI hadaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH4oqCdaWgaaWcbaGa aGymaaqabaaaaaGccaGLBbGaayzxaaaaaa@5450@

 

where β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  is a constant known as the ‘shear factor, ’ analogous to the shear coefficient for a beam.  Since the theory is approximate, the value of β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdigaaa@3281@  depends on how it is calculated.  It depends on Poisson’s ratio, but for most practical applications one can assume β5/6 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdiMaeyisISRaaGynaiaac+caca aI2aaaaa@3664@ .

 

The static equilibrium equations for a plate are

V 1 x 1 + V 2 x 2 + p 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGwbWaaSbaaS qaaiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaa beaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kaadAfadaWgaaWcbaGaaG OmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaa kiabgUcaRiaadchadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaaIWa GaaGPaVdaa@4504@

    M 11 x 1 + M 12 x 2 T 11 u 3 x 1 T 12 u 3 x 2 V 1 =0 M 21 x 1 + M 22 x 2 T 22 u 3 x 2 T 21 u 3 x 1 V 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaad2eada WgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaa leaacaaIXaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kaad2eada WgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaa leaacaaIYaaabeaaaaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaca aIXaaabeaakmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaaIZaaa beaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaOGaey OeI0IaamivamaaBaaaleaacaaIXaGaaGOmaaqabaGcdaWcaaqaaiab gkGi2kaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaaikdaaeqaaaaakiabgkHiTiaadAfadaWgaaWcbaGa aGymaaqabaGccqGH9aqpcaaIWaGaaGPaVdqaamaalaaabaGaeyOaIy RaamytamaaBaaaleaacaaIYaGaaGymaaqabaaakeaacqGHciITcaWG 4bWaaSbaaSqaaiaaigdaaeqaaaaakiabgUcaRmaalaaabaGaeyOaIy RaamytamaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqGHciITcaWG 4bWaaSbaaSqaaiaaikdaaeqaaaaakiabgkHiTiaadsfadaWgaaWcba GaaGOmaiaaikdaaeqaaOWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqa aiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabe aaaaGccqGHsislcaWGubWaaSbaaSqaaiaaikdacaaIXaaabeaakmaa laaabaGaeyOaIyRaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgk Gi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaOGaeyOeI0IaamOvamaa BaaaleaacaaIYaaabeaakiabg2da9iaaicdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdaaaa@8F50@

T 11 x 1 + T 21 x 2 =0 T 12 x 1 + T 22 x 2 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGubWaaSbaaS qaaiaaigdacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa aGymaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcaWGubWaaSbaaS qaaiaaikdacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa aGOmaaqabaaaaOGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVpaalaaabaGaeyOaIyRaamivamaaBaaaleaacaaIXaGaaGOm aaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaaki abgUcaRmaalaaabaGaeyOaIyRaamivamaaBaaaleaacaaIYaGaaGOm aaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaki abg2da9iaaicdacaaMc8oaaa@7557@

This version of plate theory accounts approximately for the effects of large in-plane loads on the out-of-plane motion of the plate (so the theory can model a thin stretched membrane as well as a plate).   In simpler versions of plate theory (which are more commonly used in practice) the terms involving products of T αβ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacqaHXoqycqaHYo Gyaeqaaaaa@3525@  and u 3 / x β MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamyDamaaBaaaleaacaaIZa aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiabek7aIbqabaaa aa@3916@  in the moment equilibrium equation are neglected.

 

For a finite element solution the equilibrium equations must be re-cast as the equivalent principle of virtual work:

A Vδ u 3 dA = C P 3 δ u 3 ds+ A p 3 δ u 3 dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWHwbGaeyyXICTaey4bIe TaeqiTdqMaamyDamaaBaaaleaacaaIZaaabeaakiaadsgacaWGbbaa leaacaWGbbaabeqdcqGHRiI8aOGaeyypa0Zaa8quaeaacaWGqbWaaS baaSqaaiaaiodaaeqaaaqaaiaadoeaaeqaniabgUIiYdGccqaH0oaz caWG1bWaaSbaaSqaaiaaiodaaeqaaOGaamizaiaadohacqGHRaWkda WdrbqaaiaadchadaWgaaWcbaGaaG4maaqabaGccqaH0oazcaWG1bWa aSbaaSqaaiaaiodaaeqaaaqaaiaadgeaaeqaniabgUIiYdGccaWGKb Gaamyqaaaa@5442@

A MδκdA A V e 3 ×δθ dA+ A δ u 3 T( u 3 )dA = C Q δθds MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWHnbGaeyyXICTaeqiTdq MaaCOUdiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaeyOe I0Yaa8quaeaacaWHwbGaeyyXICnaleaacaWGbbaabeqdcqGHRiI8aO GaaGPaVpaabmaabaGaaGPaVlaahwgadaWgaaWcbaGaaG4maaqabaGc cqGHxdaTcqaH0oazcaWH4oaacaGLOaGaayzkaaGaamizaiaadgeacq GHRaWkdaWdrbqaamaabmaabaGaey4bIeTaeqiTdqMaamyDamaaBaaa leaacaaIZaaabeaaaOGaayjkaiaawMcaaiabgwSixlaahsfacqGHfl Y1caGGOaGaey4bIeTaamyDamaaBaaaleaacaaIZaaabeaakiaacMca caWGKbGaamyqaaWcbaGaamyqaaqab0Gaey4kIipakiabg2da9maape fabaGaaCyuaiabgwSixdWcbaGaam4qaaqab0Gaey4kIipakiaaykW7 cqaH0oazcaWH4oGaamizaiaadohaaaa@7436@

A TδwdA = A pδwdA + C P δwds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWHubGaeyyXICTaey4bIe TaeqiTdqMaaC4DaiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8 aOGaeyypa0Zaa8quaeaacaWHWbGaeyyXICTaeqiTdqMaaC4Daiaads gacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaey4kaSYaa8quaeaa caWHqbaaleaacaWGdbaabeqdcqGHRiI8aOGaeyyXICTaeqiTdqMaaC 4DaiaadsgacaWGZbaaaa@5459@

For the Kirchhoff plate, V must be eliminated from the first two virtual work equations with the result

A MδκdA + A δ u 3 T( u 3 )dA = C Q δθds+ C P 3 δ u 3 ds + A p 3 δ u 3 dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacaWHnbGaeyyXICTaeqiTdq MaaCOUdiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaey4k aSYaa8quaeaadaqadaqaaiabgEGirlabes7aKjaadwhadaWgaaWcba GaaG4maaqabaaakiaawIcacaGLPaaacqGHflY1caWHubGaeyyXICTa aiikaiabgEGirlaadwhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaam izaiaadgeaaSqaaiaadgeaaeqaniabgUIiYdGccqGH9aqpdaWdrbqa aiaahgfacqGHflY1aSqaaiaadoeaaeqaniabgUIiYdGccaaMc8Uaeq iTdqMaaCiUdiaadsgacaWGZbGaey4kaSYaa8quaeaacaWGqbWaaSba aSqaaiaaiodaaeqaaOGaeqiTdqMaamyDamaaBaaaleaacaaIZaaabe aakiaadsgacaWGZbaaleaacaWGdbaabeqdcqGHRiI8aOGaey4kaSYa a8quaeaacaWGWbWaaSbaaSqaaiaaiodaaeqaaOGaeqiTdqMaamyDam aaBaaaleaacaaIZaaabeaakiaadsgacaWGbbaaleaacaWGbbaabeqd cqGHRiI8aaaa@762B@

 

 

Finite element method for in-plane displacements and forces: In many practical applications the in-plane displacements and forces in the plate may be neglected, but if needed, they can be calculated before the out-of-plane displacements.  Notice that the virtual work equation for the in-plane displacements w and forces T decouple from those for the out-of-plane displacements and rotations of the plate.   Moreover, the equation is identical (aside from the distinction between forces and stress) to that for plane stress deformation of a plate.   Consequently, the equation can be solved using the procedure described in Chapter 7, in which the in-plane displacement field is approximated by a linear variation between the three nodes on the element.   In this section we review the procedure briefly, for convenience.

 

A representative triangular plate element is illustrated in the figure.  It has three nodes with coordinates x k =( x k e 1 + y k e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEamaaBaaaleaacaWGRbaabeaaki abg2da9iaacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaCyzamaa BaaaleaacaaIXaaabeaakiabgUcaRiaadMhadaWgaaWcbaGaam4Aaa qabaGccaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3E4E@ , where k=1,2,3.  Each node has two in-plane displacement components w (k) = u α (k) e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4DamaaCaaaleqabaGaaiikaiaadU gacaGGPaaaaOGaeyypa0JaamyDamaaDaaaleaacqaHXoqyaeaacaGG OaGaam4AaiaacMcaaaGccaWHLbWaaSbaaSqaaiabeg7aHbqabaaaaa@3D38@ , (the Greek indices have values 1 or 2), the out of plane displacement u 3 (k) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaaIZaaabaGaai ikaiaadUgacaGGPaaaaaaa@350D@  , and two rotation components θ (k) = θ α (k) e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiUdmaaCaaaleqabaGaaiikaiaadU gacaGGPaaaaOGaeyypa0JaeqiUde3aa0baaSqaaiabeg7aHbqaaiaa cIcacaWGRbGaaiykaaaakiaahwgadaWgaaWcbaGaeqySdegabeaaaa a@3E38@ . 

 

The in-plane displacements and forces are then calculated as follows:

 

1.  Assemble the global stiffness matrix and force vector

K= elements k el f= elements f el MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4saiabg2da9maaqafabaGaaC4Aam aaBaaaleaacaWGLbGaamiBaaqabaaabaGaamyzaiaadYgacaWGLbGa amyBaiaadwgacaWGUbGaamiDaiaadohaaeqaniabggHiLdGccaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWHMbGaeyypa0ZaaabuaeaacaWHMbWaaSbaaSqaai aadwgacaWGSbaabeaaaeaacaWGLbGaamiBaiaadwgacaWGTbGaamyz aiaad6gacaWG0bGaam4Caaqab0GaeyyeIuoakiaaykW7aaa@7922@

where the element stiffness and force vector are

k el = A el B 0 T D 0 B 0 f el = l el 2 P 1 P 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4AamaaBaaaleaacaWGLbGaamiBaa qabaGccqGH9aqpcaWGbbWaaSbaaSqaaiaadwgacaWGSbaabeaakiaa hkeadaqhaaWcbaGaaGimaaqaaiaadsfaaaGccaWHebWaaSbaaSqaai aaicdaaeqaaOGaaCOqamaaBaaaleaacaaIWaaabeaakiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahAgadaWgaa WcbaGaamyzaiaadYgaaeqaaOGaeyypa0ZaaSaaaeaacaWGSbWaaSba aSqaaiaadwgacaWGSbaabeaaaOqaaiaaikdaaaWaamWaaeaafaqabe GabaaabaGaamiuamaaBaaaleaacaaIXaaabeaaaOqaaiaadcfadaWg aaWcbaGaaGOmaaqabaaaaaGccaGLBbGaayzxaaaaaa@7037@

Here,  A el MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGLbGaamiBaa qabaaaaa@33AD@  is the area of the element, l el MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiBamaaBaaaleaacaWGLbGaamiBaa qabaaaaa@33D8@  is the length of a loaded element side, and P α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiuamaaBaaaleaacqaHXoqyaeqaaa aa@3380@  the in-plane components of the (constant) force per unit length acting on the side of the element, while


 

where

b 1 = y 2 y 3 b 2 = y 3 y 1 b 3 = y 1 y 2 c 1 = x 3 x 2 c 2 = x 1 x 3 c 3 = x 2 x 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVxaabeqaceaaaeaacaWGIbWaaS baaSqaaiaaigdaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaaIYaaa beaakiabgkHiTiaadMhadaWgaaWcbaGaaG4maaqabaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaadkgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWG5b WaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaI XaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamOyamaaBaaaleaacaaIZaaabeaakiabg2da9iaadMha daWgaaWcbaGaaGymaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaik daaeqaaOGaaCjaVdqaaiaadogadaWgaaWcbaGaaGymaaqabaGccqGH 9aqpcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaamiEamaaBa aaleaacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4yamaaBaaale aacaaIYaaabeaakiabg2da9iaadIhadaWgaaWcbaGaaGymaaqabaGc cqGHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGJbWaaSbaaSqa aiaaiodaaeqaaOGaeyypa0JaamiEamaaBaaaleaacaaIYaaabeaaki abgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaaaaaaa@9C9C@

and

D 0 = Eh (1 ν 2 ) 1 ν 0 ν 1 0 0 0 (1ν)/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiramaaBaaaleaacaaIWaaabeaaki abg2da9maalaaabaGaamyraiaadIgaaeaacaGGOaGaaGymaiabgkHi Tiabe27aUnaaCaaaleqabaGaaGOmaaaakiaacMcaaaWaamWaaeaafa qabeWadaaabaGaaGymaaqaaiabe27aUbqaaiaaicdaaeaacqaH9oGB aeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaiikai aaigdacqGHsislcqaH9oGBcaGGPaGaai4laiaaikdaaaaacaGLBbGa ayzxaaaaaa@4B15@

 

2.  Modify the global stiffness to impose any constraints on the in-plane displacements at the boundary

 

3.  Solve the equation system Kw=f MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4saiaahEhacqGH9aqpcaWHMbaaaa@34A9@  for the in-plane displacements

 

4.  Calculate the in-plane forces (which are constant within each element) using T= D 0 B 0 w el MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCivaiabg2da9iaahseadaWgaaWcba GaaGimaaqabaGccaWHcbWaaSbaaSqaaiaaicdaaeqaaOGaaC4Damaa BaaaleaacaWGLbGaamiBaaqabaaaaa@3942@ , where w el MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4DamaaBaaaleaacaWGLbGaamiBaa qabaaaaa@33E7@  is the 6 dimensional vector of the in-plane displacements at the corners of the element.

 

 

Finite element method for out-of-plane deformation of elastic Kirchhoff plates: We next describe a method for calculating the out-of-plane deformation of a Kirchhoff plate.  The virtual work equation for the out-of-plane motion resembles that for a beam, in that the equation involves the curvature of the plate.   This means that ideally the out-of-plane displacements and its derivative must both be continuous across the boundaries of an element. For a beam, it was possible to find an interpolation scheme (using Hermitian polynomial shape functions) that satisfied this condition exactly.    There is unfortunately no equivalent interpolation scheme for a plate.   Consequently, a large number of different approaches to setting up interpolation schemes for plates have been developed over the years, and new ones continue to appear.  We will not attempt to review these here, and instead will summarize how to set up a simple triangular plate element called the ‘Specht triangle’ in honor of its author.   

 

 

The out-of-plane motion of the plate can be analyzed using the same mesh of triangular elements that is used to model its in-plane motion.   A representative triangular plate element is illustrated in Fig 8.54.   It has three nodes with coordinates x k =( x k e 1 + y k e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEamaaBaaaleaacaWGRbaabeaaki abg2da9iaacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaCyzamaa BaaaleaacaaIXaaabeaakiabgUcaRiaadMhadaWgaaWcbaGaam4Aaa qabaGccaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3E4E@ , where k=1,2,3.  Each node now has an unknown out of plane displacement u 3 (k) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaaIZaaabaGaai ikaiaadUgacaGGPaaaaaaa@350D@  , and two rotation components θ (k) = θ α (k) e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiUdmaaCaaaleqabaGaaiikaiaadU gacaGGPaaaaOGaeyypa0JaeqiUde3aa0baaSqaaiabeg7aHbqaaiaa cIcacaWGRbGaaiykaaaakiaahwgadaWgaaWcbaGaeqySdegabeaaaa a@3E38@ . 

 

As always, the goal is to calculate the displacement u 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaaa a@32C3@  and rotation θ 1 , θ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaO GaaiilaiabeI7aXnaaBaaaleaacaaIYaaabeaaaaa@36D5@  at an arbitrary point (x,y) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadIhacaGGSaGaamyEaiaacM caaaa@34E4@  within the element, given their values at the three corner nodes with coordinates ( x i , y i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaiikaiaadIhadaWgaaWcbaGaamyAaa qabaGccaGGSaGaamyEamaaBaaaleaacaWGPbaabeaakiaacMcaaaa@372C@ .  We define

u 3 = N u 1 N θ1 1 N θ2 1 N u 3 N θ1 3 N θ2 3 u 1 θ 1 1 θ 3 1 u 3 θ 1 3 θ 3 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaaIZaaabeaaki abg2da9maadmaabaqbaeqabeWbaaaabaGaamOtamaaDaaaleaacaWG 1baabaGaaGymaaaaaOqaaiaad6eadaqhaaWcbaGaeqiUdeNaaGymaa qaaiaaigdaaaaakeaacaWGobWaa0baaSqaaiabeI7aXjaaikdaaeaa caaIXaaaaaGcbaGaeS47IWeabaGaamOtamaaDaaaleaacaWG1baaba GaaG4maaaaaOqaaiaad6eadaqhaaWcbaGaeqiUdeNaaGymaaqaaiaa iodaaaaakeaacaWGobWaa0baaSqaaiabeI7aXjaaikdaaeaacaaIZa aaaaaaaOGaay5waiaaw2faamaadmaabaqbaeqabCqaaaaabaGaamyD amaaCaaaleqabaGaaGymaaaaaOqaaiabeI7aXnaaDaaaleaacaaIXa aabaGaaGymaaaaaOqaaiabeI7aXnaaDaaaleaacaaIZaaabaGaaGym aaaaaOqaaiabl6UinbqaaiaadwhadaahaaWcbeqaaiaaiodaaaaake aacqaH4oqCdaqhaaWcbaGaaGymaaqaaiaaiodaaaaakeaacqaH4oqC daqhaaWcbaGaaG4maaqaaiaaiodaaaaaaaGccaGLBbGaayzxaaaaaa@638C@

where the interpolation functions are calculated as follows:

 

1.  Calculate the ‘areal coordinates’ L i = A i / A el MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaWGPbaabeaaki abg2da9iaadgeadaWgaaWcbaGaamyAaaqabaGccaGGVaGaamyqamaa BaaaleaacaWGLbGaamiBaaqabaaaaa@3945@ , where A i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGPbaabeaaaa a@32C0@  is the area of the triangle formed by a point within the element and the two vertices opposite to node i, and A el MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqamaaBaaaleaacaWGLbGaamiBaa qabaaaaa@33AD@  is the area of the element:

L 1 = ( x 2 x)( y 3 y)( x 3 x)( y 2 y) /(2 A el ) L 2 = ( x 3 x)( y 1 y)( x 1 x)( y 3 y) /(2 A el ) L 3 = ( x 1 x)( y 2 y)( x 2 x)( y 1 y) /(2 A el ) 2 A el =( x 2 x 1 )( y 3 y 1 )( x 3 x 1 )( y 2 y 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGmbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaamWaaeaacaGGOaGaamiEamaaBaaaleaacaaIYaaa beaakiabgkHiTiaadIhacaGGPaGaaiikaiaadMhadaWgaaWcbaGaaG 4maaqabaGccqGHsislcaWG5bGaaiykaiabgkHiTiaacIcacaWG4bWa aSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaamiEaiaacMcacaGGOaGaam yEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMhacaGGPaaacaGL BbGaayzxaaGaai4laiaacIcacaaIYaGaamyqamaaBaaaleaacaWGLb GaamiBaaqabaGccaGGPaaabaGaamitamaaBaaaleaacaaIYaaabeaa kiabg2da9maadmaabaGaaiikaiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHsislcaWG4bGaaiykaiaacIcacaWG5bWaaSbaaSqaaiaaigda aeqaaOGaeyOeI0IaamyEaiaacMcacqGHsislcaGGOaGaamiEamaaBa aaleaacaaIXaaabeaakiabgkHiTiaadIhacaGGPaGaaiikaiaadMha daWgaaWcbaGaaG4maaqabaGccqGHsislcaWG5bGaaiykaaGaay5wai aaw2faaiaac+cacaGGOaGaaGOmaiaadgeadaWgaaWcbaGaamyzaiaa dYgaaeqaaOGaaiykaiaaykW7caaMc8oabaGaamitamaaBaaaleaaca aIZaaabeaakiabg2da9maadmaabaGaaiikaiaadIhadaWgaaWcbaGa aGymaaqabaGccqGHsislcaWG4bGaaiykaiaacIcacaWG5bWaaSbaaS qaaiaaikdaaeqaaOGaeyOeI0IaamyEaiaacMcacqGHsislcaGGOaGa amiEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadIhacaGGPaGaai ikaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG5bGaaiyk aaGaay5waiaaw2faaiaac+cacaGGOaGaaGOmaiaadgeadaWgaaWcba GaamyzaiaadYgaaeqaaOGaaiykaaqaaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaIYaGaamyqamaaBaaaleaacaWGLb GaamiBaaqabaGccqGH9aqpcaGGOaGaamiEamaaBaaaleaacaaIYaaa beaakiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaai ikaiaadMhadaWgaaWcbaGaaG4maaqabaGccqGHsislcaWG5bWaaSba aSqaaiaaigdaaeqaaOGaaiykaiabgkHiTiaacIcacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaa kiaacMcacaGGOaGaamyEamaaBaaaleaacaaIYaaabeaakiabgkHiTi aadMhadaWgaaWcbaGaaGymaaqabaGccaGGPaaaaaa@BD1C@

 

2.  Assemble a vector of products of L i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaWGPbaabeaaaa a@32CB@


 

where

μ 1 = d 3 d 2 d 1 μ 2 = d 1 d 3 d 2 μ 1 = d 2 d 1 d 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0ZaaSaaaeaacaWGKbWaaSbaaSqaaiaaiodaaeqaaOGaeyOe I0IaamizamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgadaWgaaWcba GaaGymaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlabeY7aTnaaBaaaleaacaaIYa aabeaakiabg2da9maalaaabaGaamizamaaBaaaleaacaaIXaaabeaa kiabgkHiTiaadsgadaWgaaWcbaGaaG4maaqabaaakeaacaWGKbWaaS baaSqaaiaaikdaaeqaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7cqaH8oqBdaWgaaWcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaa dsgadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGKbWaaSbaaSqaai aaigdaaeqaaaGcbaGaamizamaaBaaaleaacaaIZaaabeaaaaaaaa@7305@

d 1 = x 3 x 2 2 + y 3 y 2 2 d 2 = x 1 x 3 2 + y 1 y 3 2 d 3 = x 2 x 1 2 + y 2 y 1 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizamaaBaaaleaacaaIXaaabeaaki abg2da9maabmaabaGaamiEamaaBaaaleaacaaIZaaabeaakiabgkHi TiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaadMhadaWgaaWcbaGa aG4maaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaikdaaeqaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaads gadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaqadaqaaiaadIhadaWg aaWcbaGaaGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaiodaae qaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYa aeWaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyEam aaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaamizamaaBaaaleaacaaIZaaa beaakiabg2da9maabmaabaGaamiEamaaBaaaleaacaaIYaaabeaaki abgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaadMhadaWgaa WcbaGaaGOmaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaigdaaeqa aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@8835@

 

3.  The shape functions can then be calculated as weighted sums of the components of g:

N u 1 N θ1 1 N θ2 1 N u 2 N θ1 2 N θ1 2 N u 3 N θ1 3 N θ2 3 = g 1 g 4 + g 6 +2( g 7 g 9 ) b 2 ( g 9 g 6 ) b 3 g 7 c 2 ( g 9 g 6 ) c 3 g 7 g 2 g 5 + g 4 +2( g 8 g 7 ) b 3 ( g 7 g 4 ) b 1 g 8 c 3 ( g 7 g 4 ) c 1 g 8 g 3 g 6 + g 5 +2( g 9 g 8 ) b 1 ( g 8 g 5 ) b 1 g 9 c 1 ( g 8 g 5 ) c 1 g 9 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeqcbaaaaaqaaiaad6 eadaqhaaWcbaGaamyDaaqaaiaaigdaaaaakeaacaWGobWaa0baaSqa aiabeI7aXjaaigdaaeaacaaIXaaaaaGcbaGaamOtamaaDaaaleaacq aH4oqCcaaIYaaabaGaaGymaaaaaOqaaiaad6eadaqhaaWcbaGaamyD aaqaaiaaikdaaaaakeaacaWGobWaa0baaSqaaiabeI7aXjaaigdaae aacaaIYaaaaaGcbaGaamOtamaaDaaaleaacqaH4oqCcaaIXaaabaGa aGOmaaaaaOqaaiaad6eadaqhaaWcbaGaamyDaaqaaiaaiodaaaaake aacaWGobWaa0baaSqaaiabeI7aXjaaigdaaeaacaaIZaaaaaGcbaGa amOtamaaDaaaleaacqaH4oqCcaaIYaaabaGaaG4maaaaaaaakiaawU facaGLDbaacqGH9aqpdaWadaqaauaabeqajeaaaaaabaGaam4zamaa BaaaleaacaaIXaaabeaakiabgkHiTiaadEgadaWgaaWcbaGaaGinaa qabaGccqGHRaWkcaWGNbWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIa aGOmaiaacIcacaWGNbWaaSbaaSqaaiaaiEdaaeqaaOGaeyOeI0Iaam 4zamaaBaaaleaacaaI5aaabeaakiaacMcaaeaacqGHsislcaWGIbWa aSbaaSqaaiaaikdaaeqaaOGaaiikaiaadEgadaWgaaWcbaGaaGyoaa qabaGccqGHsislcaWGNbWaaSbaaSqaaiaaiAdaaeqaaOGaaiykaiab gkHiTiaadkgadaWgaaWcbaGaaG4maaqabaGccaWGNbWaaSbaaSqaai aaiEdaaeqaaaGcbaGaeyOeI0Iaam4yamaaBaaaleaacaaIYaaabeaa kiaacIcacaWGNbWaaSbaaSqaaiaaiMdaaeqaaOGaeyOeI0Iaam4zam aaBaaaleaacaaI2aaabeaakiaacMcacqGHsislcaWGJbWaaSbaaSqa aiaaiodaaeqaaOGaam4zamaaBaaaleaacaaI3aaabeaaaOqaaiaadE gadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGNbWaaSbaaSqaaiaa iwdaaeqaaOGaey4kaSIaam4zamaaBaaaleaacaaI0aaabeaakiabgU caRiaaikdacaGGOaGaam4zamaaBaaaleaacaaI4aaabeaakiabgkHi TiaadEgadaWgaaWcbaGaaG4naaqabaGccaGGPaaabaGaeyOeI0Iaam OyamaaBaaaleaacaaIZaaabeaakiaacIcacaWGNbWaaSbaaSqaaiaa iEdaaeqaaOGaeyOeI0Iaam4zamaaBaaaleaacaaI0aaabeaakiaacM cacqGHsislcaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaam4zamaaBaaa leaacaaI4aaabeaaaOqaaiabgkHiTiaadogadaWgaaWcbaGaaG4maa qabaGccaGGOaGaam4zamaaBaaaleaacaaI3aaabeaakiabgkHiTiaa dEgadaWgaaWcbaGaaGinaaqabaGccaGGPaGaeyOeI0Iaam4yamaaBa aaleaacaaIXaaabeaakiaadEgadaWgaaWcbaGaaGioaaqabaaakeaa caWGNbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0Iaam4zamaaBaaale aacaaI2aaabeaakiabgUcaRiaadEgadaWgaaWcbaGaaGynaaqabaGc cqGHRaWkcaaIYaGaaiikaiaadEgadaWgaaWcbaGaaGyoaaqabaGccq GHsislcaWGNbWaaSbaaSqaaiaaiIdaaeqaaOGaaiykaaqaaiabgkHi TiaadkgadaWgaaWcbaGaaGymaaqabaGccaGGOaGaam4zamaaBaaale aacaaI4aaabeaakiabgkHiTiaadEgadaWgaaWcbaGaaGynaaqabaGc caGGPaGaeyOeI0IaamOyamaaBaaaleaacaaIXaaabeaakiaadEgada WgaaWcbaGaaGyoaaqabaaakeaacqGHsislcaWGJbWaaSbaaSqaaiaa igdaaeqaaOGaaiikaiaadEgadaWgaaWcbaGaaGioaaqabaGccqGHsi slcaWGNbWaaSbaaSqaaiaaiwdaaeqaaOGaaiykaiabgkHiTiaadoga daWgaaWcbaGaaGymaaqabaGccaWGNbWaaSbaaSqaaiaaiMdaaeqaaa aaaOGaay5waiaaw2faaaaa@D5C2@

where (as before)

b 1 = y 2 y 3 b 2 = y 3 y 1 b 3 = y 1 y 2 c 1 = x 3 x 2 c 2 = x 1 x 3 c 3 = x 2 x 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVxaabeqaceaaaeaacaWGIbWaaS baaSqaaiaaigdaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaaIYaaa beaakiabgkHiTiaadMhadaWgaaWcbaGaaG4maaqabaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaadkgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWG5b WaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaI XaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamOyamaaBaaaleaacaaIZaaabeaakiabg2da9iaadMha daWgaaWcbaGaaGymaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaik daaeqaaOGaaCjaVdqaaiaadogadaWgaaWcbaGaaGymaaqabaGccqGH 9aqpcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaamiEamaaBa aaleaacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4yamaaBaaale aacaaIYaaabeaakiabg2da9iaadIhadaWgaaWcbaGaaGymaaqabaGc cqGHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGJbWaaSbaaSqa aiaaiodaaeqaaOGaeyypa0JaamiEamaaBaaaleaacaaIYaaabeaaki abgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaaaaaaa@9C9C@

 

4.  The derivatives of the shape functions are also needed: the first derivative can be calculated as

dg dx = d g 1 /dx d g 1 /dy d g 9 /dx d g 9 /dy = dg dL dL dx MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaC4zaaqaaiaads gacaWH4baaaiabg2da9maadmaabaqbaeqabmGaaaqaaiaadsgacaWG NbWaaSbaaSqaaiaaigdaaeqaaOGaai4laiaadsgacaWG4baabaGaam izaiaadEgadaWgaaWcbaGaaGymaaqabaGccaGGVaGaamizaiaadMha aeaacqWIUlstaeaaaeaacaWGKbGaam4zamaaBaaaleaacaaI5aaabe aakiaac+cacaWGKbGaamiEaaqaaiaadsgacaWGNbWaaSbaaSqaaiaa iMdaaeqaaOGaai4laiaadsgacaWG5baaaaGaay5waiaaw2faaiabg2 da9maalaaabaGaamizaiaahEgaaeaacaWGKbGaaCitaaaadaWcaaqa aiaadsgacaWHmbaabaGaamizaiaahIhaaaaaaa@579E@

where

dg dL = 1 0 0 0 1 0 0 0 1 L 2 L 1 0 0 L 3 L 2 L 3 0 L 1 2 L 1 L 2 L 1 2 0 0 2 L 2 L 3 L 2 2 L 3 2 0 2 L 3 L 1 + 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2(1 μ 3 ) L 1 L 2 L 3 (1 μ 3 ) L 1 2 L 3 (1 μ 3 ) L 1 2 L 2 (1 μ 1 ) L 2 2 L 3 2(1 μ 1 ) L 1 L 2 L 3 (1 μ 1 ) L 2 2 L 1 (1 μ 2 ) L 2 L 3 2 (1 μ 2 ) L 1 L 3 2 2(1 μ 2 ) L 1 L 2 L 3 + 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1+3 μ 3 )( L 3 L 2 ) L 2 L 3 (1+3 μ 3 )( L 3 2 L 2 ) L 1 L 3 (1+3 μ 3 )(2 L 3 L 2 ) L 1 L 2 (1+3 μ 1 )(2 L 1 L 3 ) L 2 L 3 (1+3 μ 1 )( L 1 L 3 ) L 1 L 3 (1+3 μ 1 )( L 1 2 L 3 ) L 1 L 2 (1+3 μ 2 )( L 2 2 L 1 ) L 2 L 3 (1+3 μ 2 )(2 L 2 L 1 ) L 1 L 3 (1+3 μ 2 )( L 2 L 1 ) L 1 L 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgacaWHNbaaba GaamizaiaahYeaaaGaeyypa0ZaamWaaeaafaqabeqcdaaaaaqaaiaa igdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaabaGaaG imaaqaaiaaicdaaeaacaaIWaaabaGaaGymaaqaaiaadYeadaWgaaWc baGaaGOmaaqabaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaaGcba GaaGimaaqaaiaaicdaaeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaaGc baGaamitamaaBaaaleaacaaIYaaabeaaaOqaaiaadYeadaWgaaWcba GaaG4maaqabaaakeaacaaIWaaabaGaamitamaaBaaaleaacaaIXaaa beaaaOqaaiaaikdacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaamitam aaBaaaleaacaaIYaaabeaaaOqaaiaadYeadaqhaaWcbaGaaGymaaqa aiaaikdaaaaakeaacaaIWaaabaGaaGimaaqaaiaaikdacaWGmbWaaS baaSqaaiaaikdaaeqaaOGaamitamaaBaaaleaacaaIZaaabeaaaOqa aiaadYeadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaWGmbWaa0 baaSqaaiaaiodaaeaacaaIYaaaaaGcbaGaaGimaaqaaiaaikdacaWG mbWaaSbaaSqaaiaaiodaaeqaaOGaamitamaaBaaaleaacaaIXaaabe aaaaaakiaawUfacaGLDbaacqGHRaWkdaWcaaqaaiaaiodaaeaacaaI YaaaamaadmaabaqbaeqabKWaaaaaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaaIYaGaaiikaiaaigdacqGHsislcqaH8oqBdaWgaaWcba GaaG4maaqabaGccaGGPaGaamitamaaBaaaleaacaaIXaaabeaakiaa dYeadaWgaaWcbaGaaGOmaaqabaGccaWGmbWaaSbaaSqaaiaaiodaae qaaaGcbaGaaiikaiaaigdacqGHsislcqaH8oqBdaWgaaWcbaGaaG4m aaqabaGccaGGPaGaamitamaaDaaaleaacaaIXaaabaGaaGOmaaaaki aadYeadaWgaaWcbaGaaG4maaqabaaakeaacaGGOaGaaGymaiabgkHi TiabeY7aTnaaBaaaleaacaaIZaaabeaakiaacMcacaWGmbWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaamitamaaBaaaleaacaaIYaaabeaa aOqaaiaacIcacaaIXaGaeyOeI0IaeqiVd02aaSbaaSqaaiaaigdaae qaaOGaaiykaiaadYeadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaWG mbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaGOmaiaacIcacaaIXaGaey OeI0IaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaaiykaiaadYeadaWg aaWcbaGaaGymaaqabaGccaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaam itamaaBaaaleaacaaIZaaabeaaaOqaaiaacIcacaaIXaGaeyOeI0Ia eqiVd02aaSbaaSqaaiaaigdaaeqaaOGaaiykaiaadYeadaqhaaWcba GaaGOmaaqaaiaaikdaaaGccaWGmbWaaSbaaSqaaiaaigdaaeqaaaGc baGaaiikaiaaigdacqGHsislcqaH8oqBdaWgaaWcbaGaaGOmaaqaba GccaGGPaGaamitamaaBaaaleaacaaIYaaabeaakiaadYeadaqhaaWc baGaaG4maaqaaiaaikdaaaaakeaacaGGOaGaaGymaiabgkHiTiabeY 7aTnaaBaaaleaacaaIYaaabeaakiaacMcacaWGmbWaaSbaaSqaaiaa igdaaeqaaOGaamitamaaDaaaleaacaaIZaaabaGaaGOmaaaaaOqaai aaikdacaGGOaGaaGymaiabgkHiTiabeY7aTnaaBaaaleaacaaIYaaa beaakiaacMcacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaamitamaaBa aaleaacaaIYaaabeaakiaadYeadaWgaaWcbaGaaG4maaqabaaaaaGc caGLBbGaayzxaaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRmaalaaabaGaaGym aaqaaiaaikdaaaWaamWaaeaafaqabeqcdaaaaaqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaacIcacaaIXaGaey4kaSIaaG4maiabeY7aTn aaBaaaleaacaaIZaaabeaakiaacMcacaGGOaGaamitamaaBaaaleaa caaIZaaabeaakiabgkHiTiaadYeadaWgaaWcbaGaaGOmaaqabaGcca GGPaGaamitamaaBaaaleaacaaIYaaabeaakiaadYeadaWgaaWcbaGa aG4maaqabaaakeaacaGGOaGaaGymaiabgUcaRiaaiodacqaH8oqBda WgaaWcbaGaaG4maaqabaGccaGGPaGaaiikaiaadYeadaWgaaWcbaGa aG4maaqabaGccqGHsislcaaIYaGaamitamaaBaaaleaacaaIYaaabe aakiaacMcacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaamitamaaBaaa leaacaaIZaaabeaaaOqaaiaacIcacaaIXaGaey4kaSIaaG4maiabeY 7aTnaaBaaaleaacaaIZaaabeaakiaacMcacaGGOaGaaGOmaiaadYea daWgaaWcbaGaaG4maaqabaGccqGHsislcaWGmbWaaSbaaSqaaiaaik daaeqaaOGaaiykaiaadYeadaWgaaWcbaGaaGymaaqabaGccaWGmbWa aSbaaSqaaiaaikdaaeqaaaGcbaGaaiikaiaaigdacqGHRaWkcaaIZa GaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacIcacaaIYaGa amitamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadYeadaWgaaWcba GaaG4maaqabaGccaGGPaGaamitamaaBaaaleaacaaIYaaabeaakiaa dYeadaWgaaWcbaGaaG4maaqabaaakeaacaGGOaGaaGymaiabgUcaRi aaiodacqaH8oqBdaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiikaiaa dYeadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGmbWaaSbaaSqaai aaiodaaeqaaOGaaiykaiaadYeadaWgaaWcbaGaaGymaaqabaGccaWG mbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaiikaiaaigdacqGHRaWkca aIZaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacIcacaWG mbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaGOmaiaadYeadaWgaa WcbaGaaG4maaqabaGccaGGPaGaamitamaaBaaaleaacaaIXaaabeaa kiaadYeadaWgaaWcbaGaaGOmaaqabaaakeaacaGGOaGaaGymaiabgU caRiaaiodacqaH8oqBdaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiik aiaadYeadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaaIYaGaamitam aaBaaaleaacaaIXaaabeaakiaacMcacaWGmbWaaSbaaSqaaiaaikda aeqaaOGaamitamaaBaaaleaacaaIZaaabeaaaOqaaiaacIcacaaIXa Gaey4kaSIaaG4maiabeY7aTnaaBaaaleaacaaIYaaabeaakiaacMca caGGOaGaaGOmaiaadYeadaWgaaWcbaGaaGOmaaqabaGccqGHsislca WGmbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaadYeadaWgaaWcbaGa aGymaaqabaGccaWGmbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaiikai aaigdacqGHRaWkcaaIZaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaOGa aiykaiaacIcacaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaam itamaaBaaaleaacaaIXaaabeaakiaacMcacaWGmbWaaSbaaSqaaiaa igdaaeqaaOGaamitamaaBaaaleaacaaIYaaabeaaaaaakiaawUfaca GLDbaaaaaa@8431@

 

dL dx = 1 2 A el b 1 c 1 b 2 c 2 b 3 c 3 2 A el = c 3 b 2 b 3 c 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCitaaqaaiaads gacaWH4baaaiabg2da9maalaaabaGaaGymaaqaaiaaikdacaWGbbWa aSbaaSqaaiaadwgacaWGSbaabeaaaaGcdaWadaqaauaabeqadiaaae aacaWGIbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaam4yamaaBaaaleaa caaIXaaabeaaaOqaaiaadkgadaWgaaWcbaGaaGOmaaqabaaakeaaca WGJbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOyamaaBaaaleaacaaI ZaaabeaaaOqaaiaadogadaWgaaWcbaGaaG4maaqabaaaaaGccaGLBb GaayzxaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIYa GaamyqamaaBaaaleaacaWGLbGaamiBaaqabaGccqGH9aqpcaWGJbWa aSbaaSqaaiaaiodaaeqaaOGaamOyamaaBaaaleaacaaIYaaabeaaki abgkHiTiaadkgadaWgaaWcbaGaaG4maaqabaGccaWGJbWaaSbaaSqa aiaaikdaaeqaaaaa@6998@

 

5.  Similarly, the second derivatives are

d 2 g d x 2 = d 2 g 1 /d x 2 d 2 g 1 /d y 2 d 2 g 1 /dxdy d 2 g 9 /d x 2 d 2 g 9 /d y 2 d 2 g 9 /dxdy = d 2 g d L 2 d 2 L d x 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbWaaWbaaSqabeaaca aIYaaaaOGaaC4zaaqaaiaadsgacaWH4bWaaWbaaSqabeaacaaIYaaa aaaakiabg2da9maadmaabaqbaeqabmWaaaqaaiaadsgadaahaaWcbe qaaiaaikdaaaGccaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaai4laiaa dsgacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaamizamaaCaaale qabaGaaGOmaaaakiaadEgadaWgaaWcbaGaaGymaaqabaGccaGGVaGa amizaiaadMhadaahaaWcbeqaaiaaikdaaaaakeaacaWGKbWaaWbaaS qabeaacaaIYaaaaOGaam4zamaaBaaaleaacaaIXaaabeaakiaac+ca caWGKbGaamiEaiaadsgacaWG5baabaaabaGaeSO7I0eabaaabaGaam izamaaCaaaleqabaGaaGOmaaaakiaadEgadaWgaaWcbaGaaGyoaaqa baGccaGGVaGaamizaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaaca WGKbWaaWbaaSqabeaacaaIYaaaaOGaam4zamaaBaaaleaacaaI5aaa beaakiaac+cacaWGKbGaamyEamaaCaaaleqabaGaaGOmaaaaaOqaai aadsgadaahaaWcbeqaaiaaikdaaaGccaWGNbWaaSbaaSqaaiaaiMda aeqaaOGaai4laiaadsgacaWG4bGaamizaiaadMhaaaaacaGLBbGaay zxaaGaeyypa0ZaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGa aC4zaaqaaiaadsgacaWHmbWaaWbaaSqabeaacaaIYaaaaaaakmaala aabaGaamizamaaCaaaleqabaGaaGOmaaaakiaahYeaaeaacaWGKbGa aCiEamaaCaaaleqabaGaaGOmaaaaaaaaaa@755C@


Where

 

d 2 L d x 2 = 1 2 A el 2 b 1 2 c 1 2 b 1 c 1 b 2 2 c 2 2 b 2 c 2 b 3 2 c 3 2 b 3 c 3 2 b 1 b 2 2 c 1 c 2 b 1 c 2 + b 2 c 1 2 b 1 b 3 2 c 1 c 3 b 1 c 3 + b 3 c 1 2 b 2 b 3 2 c 2 c 3 b 2 c 3 + b 3 c 2 2 A el = c 3 b 2 b 3 c 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbWaaWbaaSqabeaaca aIYaaaaOGaaCitaaqaaiaadsgacaWH4bWaaWbaaSqabeaacaaIYaaa aaaakiabg2da9maalaaabaGaaGymaaqaamaabmaabaGaaGOmaiaadg eadaWgaaWcbaGaamyzaiaadYgaaeqaaaGccaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaaaakmaadmaabaqbaeqabyWaaaaabaGaamOyam aaDaaaleaacaaIXaaabaGaaGOmaaaaaOqaaiaadogadaqhaaWcbaGa aGymaaqaaiaaikdaaaaakeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaO Gaam4yamaaBaaaleaacaaIXaaabeaaaOqaaiaadkgadaqhaaWcbaGa aGOmaaqaaiaaikdaaaaakeaacaWGJbWaa0baaSqaaiaaikdaaeaaca aIYaaaaaGcbaGaamOyamaaBaaaleaacaaIYaaabeaakiaadogadaWg aaWcbaGaaGOmaaqabaaakeaacaWGIbWaa0baaSqaaiaaiodaaeaaca aIYaaaaaGcbaGaam4yamaaDaaaleaacaaIZaaabaGaaGOmaaaaaOqa aiaadkgadaWgaaWcbaGaaG4maaqabaGccaWGJbWaaSbaaSqaaiaaio daaeqaaaGcbaGaaGOmaiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG IbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaiaadogadaWgaaWcba GaaGymaaqabaGccaWGJbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOy amaaBaaaleaacaaIXaaabeaakiaadogacaWLa8+aaSbaaSqaaiaaik daaeqaaOGaey4kaSIaamOyamaaBaaaleaacaaIYaaabeaakiaadoga daWgaaWcbaGaaGymaaqabaaakeaacaaIYaGaamOyamaaBaaaleaaca aIXaaabeaakiaadkgadaWgaaWcbaGaaG4maaqabaaakeaacaaIYaGa am4yamaaBaaaleaacaaIXaaabeaakiaadogadaWgaaWcbaGaaG4maa qabaaakeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaam4yamaaBaaa leaacaaIZaaabeaakiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqaba GccaWGJbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaiaadkgadaWg aaWcbaGaaGOmaaqabaGccaWGIbWaaSbaaSqaaiaaiodaaeqaaaGcba GaaGOmaiaadogadaWgaaWcbaGaaGOmaaqabaGccaWGJbWaaSbaaSqa aiaaiodaaeqaaaGcbaGaamOyamaaBaaaleaacaaIYaaabeaakiaado gadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaa iodaaeqaaOGaam4yamaaBaaaleaacaaIYaaabeaaaaaakiaawUfaca GLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaikdaca WGbbWaaSbaaSqaaiaadwgacaWGSbaabeaakiabg2da9iaadogadaWg aaWcbaGaaG4maaqabaGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaey OeI0IaamOyamaaBaaaleaacaaIZaaabeaakiaadogadaWgaaWcbaGa aGOmaaqabaaaaa@B28A@

The curvature and rotation of the plate can then be calculated as

θ 2 , θ 1 T = B θ [ u 3 1 θ 1 1 θ 2 1 u 3 3 θ 1 3 θ 2 3 ] T κ 11 , κ 22 ,2 κ 12 T = B κ [ u 3 1 θ 1 1 θ 2 1 u 3 3 θ 1 3 θ 2 3 ] T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWadaqaaiabgkHiTiabeI7aXn aaBaaaleaacaaIYaaabeaakiaacYcacqaH4oqCdaWgaaWcbaGaaGym aaqabaaakiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGccqGH9a qpcaWHcbWaaSbaaSqaaiabeI7aXbqabaGccaGGBbqbaeqabeWbaaaa baGaamyDamaaDaaaleaacaaIZaaabaGaaGymaaaaaOqaaiabeI7aXn aaDaaaleaacaaIXaaabaGaaGymaaaaaOqaaiabeI7aXnaaDaaaleaa caaIYaaabaGaaGymaaaaaOqaaiabl+UimbqaaiaadwhadaqhaaWcba GaaG4maaqaaiaaiodaaaaakeaacqaH4oqCdaqhaaWcbaGaaGymaaqa aiaaiodaaaaakeaacqaH4oqCdaqhaaWcbaGaaGOmaaqaaiaaiodaaa GccaGGDbWaaWbaaSqabeaacaWGubaaaaaaaOqaamaadmaabaGaeqOU dS2aaSbaaSqaaiaaigdacaaIXaaabeaakiaacYcacqaH6oWAdaWgaa WcbaGaaGOmaiaaikdaaeqaaOGaaiilaiaaikdacqaH6oWAdaWgaaWc baGaaGymaiaaikdaaeqaaaGccaGLBbGaayzxaaWaaWbaaSqabeaaca WGubaaaOGaeyypa0JaaCOqamaaBaaaleaacqaH6oWAaeqaaOGaai4w auaabeqabCaaaaqaaiaadwhadaqhaaWcbaGaaG4maaqaaiaaigdaaa aakeaacqaH4oqCdaqhaaWcbaGaaGymaaqaaiaaigdaaaaakeaacqaH 4oqCdaqhaaWcbaGaaGOmaaqaaiaaigdaaaaakeaacqWIVlctaeaaca WG1bWaa0baaSqaaiaaiodaaeaacaaIZaaaaaGcbaGaeqiUde3aa0ba aSqaaiaaigdaaeaacaaIZaaaaaGcbaGaeqiUde3aa0baaSqaaiaaik daaeaacaaIZaaaaOGaaiyxamaaCaaaleqabaGaamivaaaaaaaaaaa@80F1@

where

B θ = N u 1 / x 1 N θ1 1 / x 1 N θ2 1 / x 1 N u 3 / x 1 N θ1 3 / x 1 N θ2 3 / x 1 N u 1 / x 2 N θ1 1 / x 2 N θ2 1 / x 2 N u 3 / x 2 N θ1 3 / x 2 N θ2 3 / x 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqamaaBaaaleaacqaH4oqCaeqaaO Gaeyypa0ZaamWaaeaafaqabeGahaaaaeaacqGHciITcaWGobWaa0ba aSqaaiaadwhaaeaacaaIXaaaaOGaai4laiabgkGi2kaadIhadaWgaa WcbaGaaGymaaqabaaakeaacqGHciITcaWGobWaa0baaSqaaiabeI7a XjaaigdaaeaacaaIXaaaaOGaai4laiabgkGi2kaadIhadaWgaaWcba GaaGymaaqabaaakeaacqGHciITcaWGobWaa0baaSqaaiabeI7aXjaa ikdaaeaacaaIXaaaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaaG ymaaqabaaakeaacqWIVlctaeaacaWGobWaa0baaSqaaiaadwhaaeaa caaIZaaaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqaba aakeaacqGHciITcaWGobWaa0baaSqaaiabeI7aXjaaigdaaeaacaaI ZaaaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaake aacqGHciITcaWGobWaa0baaSqaaiabeI7aXjaaikdaaeaacaaIZaaa aOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaakeaacq GHciITcaWGobWaa0baaSqaaiaadwhaaeaacaaIXaaaaOGaai4laiab gkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWGob Waa0baaSqaaiabeI7aXjaaigdaaeaacaaIXaaaaOGaai4laiabgkGi 2kaadIhadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWGobWaa0 baaSqaaiabeI7aXjaaikdaaeaacaaIXaaaaOGaai4laiabgkGi2kaa dIhadaWgaaWcbaGaaGOmaaqabaaakeaacqWIVlctaeaacqGHciITca WGobWaa0baaSqaaiaadwhaaeaacaaIZaaaaOGaai4laiabgkGi2kaa dIhadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWGobWaa0baaS qaaiabeI7aXjaaigdaaeaacaaIZaaaaOGaai4laiabgkGi2kaadIha daWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWGobWaa0baaSqaai abeI7aXjaaikdaaeaacaaIZaaaaOGaai4laiabgkGi2kaadIhadaWg aaWcbaGaaGOmaaqabaaaaaGccaGLBbGaayzxaaaaaa@A701@


 

The bending moments follow as

M 11 , M 22 , M 12 T = D κ κ 11 , κ 22 ,2 κ 12 T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWGnbWaaSbaaSqaaiaaig dacaaIXaaabeaakiaacYcacaWGnbWaaSbaaSqaaiaaikdacaaIYaaa beaakiaacYcacaWGnbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOGaay 5waiaaw2faamaaCaaaleqabaGaamivaaaakiabg2da9iaahseadaWg aaWcbaGaeqOUdSgabeaakmaadmaabaGaeqOUdS2aaSbaaSqaaiaaig dacaaIXaaabeaakiaacYcacqaH6oWAdaWgaaWcbaGaaGOmaiaaikda aeqaaOGaaiilaiaaikdacqaH6oWAdaWgaaWcbaGaaGymaiaaikdaae qaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaaaa@4FAB@

where

D κ = E h 3 12(1 ν 2 ) 1 ν 0 ν 1 0 0 0 (1ν)/2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiramaaBaaaleaacqaH6oWAaeqaaO Gaeyypa0ZaaSaaaeaacaWGfbGaamiAamaaCaaaleqabaGaaG4maaaa aOqaaiaaigdacaaIYaGaaiikaiaaigdacqGHsislcqaH9oGBdaahaa WcbeqaaiaaikdaaaGccaGGPaaaamaadmaabaqbaeqabmWaaaqaaiaa igdaaeaacqaH9oGBaeaacaaIWaaabaGaeqyVd4gabaGaaGymaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaacIcacaaIXaGaeyOeI0Ia eqyVd4Maaiykaiaac+cacaaIYaaaaaGaay5waiaaw2faaaaa@4E78@

 

 

With these definitions, the principle of virtual work reduces to a system of linear equations

KU=FK= elements k el F= nodes f n + elements r el MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4saiaahwfacqGH9aqpcaWHgbGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaC4saiabg2da9maaqafabaGa aC4AamaaBaaaleaacaWGLbGaamiBaaqabaGccaaMc8UaaGPaVlaayk W7aSqaaiaadwgacaWGSbGaamyzaiaad2gacaWGLbGaamOBaiaadsha caWGZbaabeqdcqGHris5aOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaahAeacqGH9aqpdaaeqbqaaiaahAgada WgaaWcbaGaamOBaaqabaGccaaMc8UaaGPaVlaaykW7aSqaaiaad6ga caWGVbGaamizaiaadwgacaWGZbaabeqdcqGHris5aOGaey4kaSYaaa buaeaacaWHYbWaaSbaaSqaaiaadwgacaWGSbaabeaakiaaykW7caaM c8UaaGPaVdWcbaGaamyzaiaadYgacaWGLbGaamyBaiaadwgacaWGUb GaamiDaiaadohaaeqaniabggHiLdaaaa@A254@

where U is a vector of unknown nodal displacements and rotations (as components in the  {i,j,k} MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaai4EaiaahMgacaGGSaGaaCOAaiaacY cacaWHRbGaaiyFaaaa@3719@  basis), F is a vector of nodal forces and moments, and

k el = A el B κ T D κ B κ + B θ T T B θ dA A el 3 i B κ T ( ξ i ) D κ B κ ( ξ i ) + B θ T ( ξ i )T B θ ( ξ i ) r el = A el N T p 3 dA A el 3 i N T ( ξ i ) p 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHRbWaaSbaaSqaaiaadwgaca WGSbaabeaakiabg2da9maapehabaGaaCOqamaaDaaaleaacqaH6oWA aeaacaWGubaaaOGaaCiramaaBaaaleaacqaH6oWAaeqaaOGaaCOqam aaBaaaleaacqaH6oWAaeqaaOGaey4kaSIaaCOqamaaDaaaleaacqaH 4oqCaeaacaWGubaaaOGaaCivaiaahkeadaWgaaWcbaGaeqiUdehabe aakiaadsgacaWGbbaaleaacaWGbbWaaSbaaWqaaiaadwgacaWGSbaa beaaaSqaaaqdcqGHRiI8aOGaeyisIS7aaSaaaeaacaWGbbWaaSbaaS qaaiaadwgacaWGSbaabeaaaOqaaiaaiodaaaWaaabuaeaacaWHcbWa a0baaSqaaiabeQ7aRbqaaiaadsfaaaGccaGGOaGaaCOVdmaaBaaale aacaWGPbaabeaakiaacMcacaWHebWaaSbaaSqaaiabeQ7aRbqabaGc caWHcbWaaSbaaSqaaiabeQ7aRbqabaGccaGGOaGaaCOVdmaaBaaale aacaWGPbaabeaakiaacMcaaSqaaiaadMgaaeqaniabggHiLdGccqGH RaWkcaWHcbWaa0baaSqaaiabeI7aXbqaaiaadsfaaaGccaGGOaGaaC OVdmaaBaaaleaacaWGPbaabeaakiaacMcacaWHubGaaCOqamaaBaaa leaacqaH4oqCaeqaaOGaaiikaiaah67adaWgaaWcbaGaamyAaaqaba GccaGGPaaabaGaaCOCamaaBaaaleaacaWGLbGaamiBaaqabaGccqGH 9aqpdaWdXbqaaiaah6eadaahaaWcbeqaaiaadsfaaaGccaWGWbWaaS baaSqaaiaaiodaaeqaaOGaamizaiaadgeaaSqaaiaadgeadaWgaaad baGaamyzaiaadYgaaeqaaaWcbaaaniabgUIiYdGccqGHijYUdaWcaa qaaiaadgeadaWgaaWcbaGaamyzaiaadYgaaeqaaaGcbaGaaG4maaaa daaeqbqaaiaah6eadaahaaWcbeqaaiaadsfaaaGccaGGOaGaaCOVdm aaBaaaleaacaWGPbaabeaakiaacMcacaWGWbWaaSbaaSqaaiaaioda aeqaaaqaaiaadMgaaeqaniabggHiLdaaaaa@9433@

are the element stiffness matrix and force vector, with ξ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOVdmaaBaaaleaacaWGPbaabeaaaa a@3344@  the coordinates for a 3 point Gauss integration scheme

ξ 1 =0.5( x 1 e 1 + y 1 e 2 )+0.5( x 2 e 1 + y 2 e 2 ) ξ 2 =0.5( x 2 e 1 + y 2 e 2 )+0.5( x 3 e 1 + y 3 e 2 ) ξ 3 =0.5( x 1 e 1 + y 1 e 2 )+0.5( x 3 e 1 + y 3 e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWH+oWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaaGimaiaac6cacaaI1aGaaiikaiaadIhadaWgaaWc baGaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS IaamyEamaaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGOm aaqabaGccaGGPaGaey4kaSIaaGimaiaac6cacaaI1aGaaiikaiaadI hadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSIaamyEamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaa WcbaGaaGOmaaqabaGccaGGPaaabaGaaCOVdmaaBaaaleaacaaIYaaa beaakiabg2da9iaaicdacaGGUaGaaGynaiaacIcacaWG4bWaaSbaaS qaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiabgUca RiaadMhadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaik daaeqaaOGaaiykaiabgUcaRiaaicdacaGGUaGaaGynaiaacIcacaWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabe aakiabgUcaRiaadMhadaWgaaWcbaGaaG4maaqabaGccaWHLbWaaSba aSqaaiaaikdaaeqaaOGaaiykaaqaaiaah67adaWgaaWcbaGaaG4maa qabaGccqGH9aqpcaaIWaGaaiOlaiaaiwdacaGGOaGaamiEamaaBaaa leaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRa WkcaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaCyzamaaBaaaleaacaaI YaaabeaakiaacMcacqGHRaWkcaaIWaGaaiOlaiaaiwdacaGGOaGaam iEamaaBaaaleaacaaIZaaabeaakiaahwgadaWgaaWcbaGaaGymaaqa baGccqGHRaWkcaWG5bWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaaBa aaleaacaaIYaaabeaakiaacMcaaaaa@856B@

 

 

Finite element method for out-of-plane deformation of elastic Reissner-Mindlin plates: The principle of virtual work for the Reissner-Mindlin plate consists of two coupled virtual work equations for the unknown displacement and rotation of transverse cross-sections of the plate.    The out of plane displacement and the rotation of the plate are now two are independent variables,

 

1. There is no need to ensure that the rotation are related by a compatibility constraint;

 

2. The displacement and rotation must be continuous across element boundaries, but there is no need for continuity of the derivative of the displacement.

 

At first sight this suggests that displacements and rotations could be interpolated using the standard 2D shape functions, but unfortunately these all suffer from shear locking if the plate thickness is small.   There have been many attempts to design locking resistant plate elements.   We will not attempt to review these here, and instead describe the simple ‘Min3’ triangular element developed by Tessler and Hughes as a representative example.

 

To proceed with the finite element formulation, it is helpful to combine the two virtual work equations for the plate beam into a single, symmetric form.   For this purpose we define a shear/axial strain vector

γ= u 3 e 3 ×θ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Sdiabg2da9iabgEGirlaadwhada WgaaWcbaGaaG4maaqabaGccqGHsislcaWHLbWaaSbaaSqaaiaaioda aeqaaOGaey41aqRaaCiUdaaa@3CC0@

Adding the two virtual work equations then yields

A Mδκ dA+ A VδγdA + A δ u 3 T( u 3 )dA = C P 3 δ u 3 ds+ A p 3 δ u 3 dA+ C Q δθds MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVpaapehabaGaaCytaiabgwSixl abes7aKjaahQ7aaSqaaiaadgeaaeaaa0Gaey4kIipakiaadsgacaWG bbGaey4kaSYaa8qCaeaacaWHwbGaeyyXICTaeqiTdqMaaC4Sdiaads gacaWGbbaaleaacaWGbbaabaaaniabgUIiYdGccqGHRaWkdaWdrbqa amaabmaabaGaey4bIeTaeqiTdqMaamyDamaaBaaaleaacaaIZaaabe aaaOGaayjkaiaawMcaaiabgwSixlaahsfacqGHflY1caGGOaGaey4b IeTaamyDamaaBaaaleaacaaIZaaabeaakiaacMcacaWGKbGaamyqaa WcbaGaamyqaaqab0Gaey4kIipakiabg2da9maapefabaGaamiuamaa BaaaleaacaaIZaaabeaaaeaacaWGdbaabeqdcqGHRiI8aOGaeqiTdq MaamyDamaaBaaaleaacaaIZaaabeaakiaadsgacaWGZbGaey4kaSYa a8quaeaacaWGWbWaaSbaaSqaaiaaiodaaeqaaOGaeqiTdqMaamyDam aaBaaaleaacaaIZaaabeaaaeaacaWGbbaabeqdcqGHRiI8aOGaamiz aiaadgeacqGHRaWkdaWdrbqaaiaahgfacqGHflY1aSqaaiaadoeaae qaniabgUIiYdGccaaMc8UaeqiTdqMaaCiUdiaadsgacaWGZbaaaa@838D@

 

As for the Kirchhoff plate, the elements are triangular, such as the example illustrated in Fig 8.54.   A generic element has three nodes with coordinates x k =( x k e 1 + y k e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiEamaaBaaaleaacaWGRbaabeaaki abg2da9iaacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaCyzamaa BaaaleaacaaIXaaabeaakiabgUcaRiaadMhadaWgaaWcbaGaam4Aaa qabaGccaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@3E4E@ , where k=1,2,3.  Each node has an unknown out of plane displacement u 3 (k) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaaIZaaabaGaai ikaiaadUgacaGGPaaaaaaa@350D@  , and two rotation components θ (k) = θ α (k) e α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiUdmaaCaaaleqabaGaaiikaiaadU gacaGGPaaaaOGaeyypa0JaeqiUde3aa0baaSqaaiabeg7aHbqaaiaa cIcacaWGRbGaaiykaaaakiaahwgadaWgaaWcbaGaeqySdegabeaaaa a@3E38@ . 

 

The displacement and rotation of the plate are now interpolated separately as

u 3 , θ 1 , θ 2 T =N u 3 1 θ 1 1 θ 2 1 u 3 3 θ 1 3 θ 2 3 T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWG1bWaaSbaaSqaaiaaio daaeqaaOGaaiilaiabeI7aXnaaBaaaleaacaaIXaaabeaakiaacYca cqaH4oqCdaWgaaWcbaGaaGOmaaqabaaakiaawUfacaGLDbaadaahaa WcbeqaaiaadsfaaaGccqGH9aqpcaWHobWaamWaaeaafaqabeqahaaa aeaacaWG1bWaa0baaSqaaiaaiodaaeaacaaIXaaaaaGcbaGaeqiUde 3aa0baaSqaaiaaigdaaeaacaaIXaaaaaGcbaGaeqiUde3aa0baaSqa aiaaikdaaeaacaaIXaaaaaGcbaGaeS47IWeabaGaamyDamaaDaaale aacaaIZaaabaGaaG4maaaaaOqaaiabeI7aXnaaDaaaleaacaaIXaaa baGaaG4maaaaaOqaaiabeI7aXnaaDaaaleaacaaIYaaabaGaaG4maa aaaaaakiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaaaaa@563D@

where

N= L 1 N θ1 1 N θ2 1 L 3 N θ1 3 N θ2 3 0 L 1 0 0 L 3 0 0 0 L 1 0 0 L 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOtaiabg2da9maadmaabaqbaeqabm WbaaaabaGaamitamaaBaaaleaacaaIXaaabeaaaOqaaiaad6eadaqh aaWcbaGaeqiUdeNaaGymaaqaaiaaigdaaaaakeaacaWGobWaa0baaS qaaiabeI7aXjaaikdaaeaacaaIXaaaaaGcbaaabaGaamitamaaBaaa leaacaaIZaaabeaaaOqaaiaad6eadaqhaaWcbaGaeqiUdeNaaGymaa qaaiaaiodaaaaakeaacaWGobWaa0baaSqaaiabeI7aXjaaikdaaeaa caaIZaaaaaGcbaGaaGimaaqaaiaadYeadaWgaaWcbaGaaGymaaqaba aakeaacaaIWaaabaGaeS47IWeabaGaaGimaaqaaiaadYeadaWgaaWc baGaaG4maaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca WGmbWaaSbaaSqaaiaaigdaaeqaaaGcbaaabaGaaGimaaqaaiaaicda aeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaaaaaOGaay5waiaaw2faaa aa@5804@

with L i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaBaaaleaacaWGPbaabeaaaa a@32CB@  the areal coordinates

L 1 = ( x 2 x)( y 3 y)( x 3 x)( y 2 y) /(2 A el ) L 2 = ( x 3 x)( y 1 y)( x 1 x)( y 3 y) /(2 A el ) L 3 = ( x 1 x)( y 2 y)( x 2 x)( y 1 y) /(2 A el ) 2 A el =( x 2 x 1 )( y 3 y 1 )( x 3 x 1 )( y 2 y 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGmbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaamWaaeaacaGGOaGaamiEamaaBaaaleaacaaIYaaa beaakiabgkHiTiaadIhacaGGPaGaaiikaiaadMhadaWgaaWcbaGaaG 4maaqabaGccqGHsislcaWG5bGaaiykaiabgkHiTiaacIcacaWG4bWa aSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaamiEaiaacMcacaGGOaGaam yEamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadMhacaGGPaaacaGL BbGaayzxaaGaai4laiaacIcacaaIYaGaamyqamaaBaaaleaacaWGLb GaamiBaaqabaGccaGGPaaabaGaamitamaaBaaaleaacaaIYaaabeaa kiabg2da9maadmaabaGaaiikaiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHsislcaWG4bGaaiykaiaacIcacaWG5bWaaSbaaSqaaiaaigda aeqaaOGaeyOeI0IaamyEaiaacMcacqGHsislcaGGOaGaamiEamaaBa aaleaacaaIXaaabeaakiabgkHiTiaadIhacaGGPaGaaiikaiaadMha daWgaaWcbaGaaG4maaqabaGccqGHsislcaWG5bGaaiykaaGaay5wai aaw2faaiaac+cacaGGOaGaaGOmaiaadgeadaWgaaWcbaGaamyzaiaa dYgaaeqaaOGaaiykaiaaykW7aeaacaWGmbWaaSbaaSqaaiaaiodaae qaaOGaeyypa0ZaamWaaeaacaGGOaGaamiEamaaBaaaleaacaaIXaaa beaakiabgkHiTiaadIhacaGGPaGaaiikaiaadMhadaWgaaWcbaGaaG OmaaqabaGccqGHsislcaWG5bGaaiykaiabgkHiTiaacIcacaWG4bWa aSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiEaiaacMcacaGGOaGaam yEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadMhacaGGPaaacaGL BbGaayzxaaGaai4laiaacIcacaaIYaGaamyqamaaBaaaleaacaWGLb GaamiBaaqabaGccaGGPaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaIYaGaamyqamaaBaaaleaacaWGLb GaamiBaaqabaGccqGH9aqpcaGGOaGaamiEamaaBaaaleaacaaIYaaa beaakiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaai ikaiaadMhadaWgaaWcbaGaaG4maaqabaGccqGHsislcaWG5bWaaSba aSqaaiaaigdaaeqaaOGaaiykaiabgkHiTiaacIcacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaa kiaacMcacaGGOaGaamyEamaaBaaaleaacaaIYaaabeaakiabgkHiTi aadMhadaWgaaWcbaGaaGymaaqabaGccaGGPaaaaaa@BD1C@

and

N θ1 1 = 1 2 b 2 L 3 L 1 b 3 L 1 L 2 N θ1 2 = 1 2 b 3 L 1 L 2 b 1 L 2 L 3 N θ1 3 = 1 2 b 1 L 2 L 3 b 2 L 3 L 1 N θ2 1 = 1 2 c 2 L 3 L 1 c 3 L 1 L 2 N θ2 2 = 1 2 c 3 L 1 L 2 c 1 L 2 L 3 N θ2 3 = 1 2 c 1 L 2 L 3 c 2 L 3 L 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqbaeqabmqaaaqaaiaad6eadaqhaaWcba GaeqiUdeNaaGymaaqaaiaaigdaaaGccqGH9aqpdaWcaaqaaiaaigda aeaacaaIYaaaamaabmaabaGaamOyamaaBaaaleaacaaIYaaabeaaki aadYeadaWgaaWcbaGaaG4maaqabaGccaWGmbWaaSbaaSqaaiaaigda aeqaaOGaeyOeI0IaamOyamaaBaaaleaacaaIZaaabeaakiaadYeada WgaaWcbaGaaGymaaqabaGccaWGmbWaaSbaaSqaaiaaikdaaeqaaaGc caGLOaGaayzkaaaabaGaamOtamaaDaaaleaacqaH4oqCcaaIXaaaba GaaGOmaaaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWa aeaacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaamitamaaBaaaleaaca aIXaaabeaakiaadYeadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG IbWaaSbaaSqaaiaaigdaaeqaaOGaamitamaaBaaaleaacaaIYaaabe aakiaadYeadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaeaa caWGobWaa0baaSqaaiabeI7aXjaaigdaaeaacaaIZaaaaOGaeyypa0 ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiaadkgadaWgaaWc baGaaGymaaqabaGccaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaamitam aaBaaaleaacaaIZaaabeaakiabgkHiTiaadkgadaWgaaWcbaGaaGOm aaqabaGccaWGmbWaaSbaaSqaaiaaiodaaeqaaOGaamitamaaBaaale aacaaIXaaabeaaaOGaayjkaiaawMcaaaaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7faqabeWabaaabaGaamOtam aaDaaaleaacqaH4oqCcaaIYaaabaGaaGymaaaakiabg2da9maalaaa baGaaGymaaqaaiaaikdaaaWaaeWaaeaacaWGJbWaaSbaaSqaaiaaik daaeqaaOGaamitamaaBaaaleaacaaIZaaabeaakiaadYeadaWgaaWc baGaaGymaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaaiodaaeqaaO GaamitamaaBaaaleaacaaIXaaabeaakiaadYeadaWgaaWcbaGaaGOm aaqabaaakiaawIcacaGLPaaaaeaacaWGobWaa0baaSqaaiabeI7aXj aaikdaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOm aaaadaqadaqaaiaadogadaWgaaWcbaGaaG4maaqabaGccaWGmbWaaS baaSqaaiaaigdaaeqaaOGaamitamaaBaaaleaacaaIYaaabeaakiab gkHiTiaadogadaWgaaWcbaGaaGymaaqabaGccaWGmbWaaSbaaSqaai aaikdaaeqaaOGaamitamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaa wMcaaaqaaiaad6eadaqhaaWcbaGaeqiUdeNaaGOmaaqaaiaaiodaaa GccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaam4y amaaBaaaleaacaaIXaaabeaakiaadYeadaWgaaWcbaGaaGOmaaqaba GccaWGmbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0Iaam4yamaaBaaa leaacaaIYaaabeaakiaadYeadaWgaaWcbaGaaG4maaqabaGccaWGmb WaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaaaa@CDDE@

with

b 1 = y 2 y 3 b 2 = y 3 y 1 b 3 = y 1 y 2 c 1 = x 3 x 2 c 2 = x 1 x 3 c 3 = x 2 x 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVxaabeqaceaaaeaacaWGIbWaaS baaSqaaiaaigdaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaaIYaaa beaakiabgkHiTiaadMhadaWgaaWcbaGaaG4maaqabaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaadkgadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWG5b WaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaI XaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamOyamaaBaaaleaacaaIZaaabeaakiabg2da9iaadMha daWgaaWcbaGaaGymaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaik daaeqaaOGaaCjaVdqaaiaadogadaWgaaWcbaGaaGymaaqabaGccqGH 9aqpcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaamiEamaaBa aaleaacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4yamaaBaaale aacaaIYaaabeaakiabg2da9iaadIhadaWgaaWcbaGaaGymaaqabaGc cqGHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGJbWaaSbaaSqa aiaaiodaaeqaaOGaeyypa0JaamiEamaaBaaaleaacaaIYaaabeaaki abgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaaaaaaa@9C9C@

The derivatives of these shape functions can be calculated as

d N θ dx = d N θ dL dL dx MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaaCOtamaaBaaale aacqaH4oqCaeqaaaGcbaGaamizaiaahIhaaaGaeyypa0ZaaSaaaeaa caWGKbGaaCOtamaaBaaaleaacqaH4oqCaeqaaaGcbaGaamizaiaahY eaaaWaaSaaaeaacaWGKbGaaCitaaqaaiaadsgacaWH4baaaaaa@40BE@

where

N θ L = N θ1 1 / L 1 N θ1 1 / L 2 N θ1 1 / L 3 N θ2 1 / L 2 N θ2 1 / L 2 = 1 2 b 2 L 3 b 3 L 2 b 3 L 1 b 2 L 1 c 2 L 3 c 3 L 2 c 3 L 1 c 2 L 1 b 3 L 2 b 3 L 1 b 1 L 3 b 1 L 2 c 3 L 2 c 3 L 1 c 1 L 3 c 1 L 2 b 2 L 3 b 1 L 3 b 1 L 2 b 2 L 1 c 2 L 3 c 1 L 3 c 1 L 2 c 2 L 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiabgkGi2kaah6eada WgaaWcbaGaeqiUdehabeaaaOqaaiabgkGi2kaahYeaaaGaeyypa0Za amWaaeaafaqabeWadaaabaGaeyOaIyRaamOtamaaDaaaleaacqaH4o qCcaaIXaaabaGaaGymaaaakiaac+cacqGHciITcaWGmbWaaSbaaSqa aiaaigdaaeqaaaGcbaGaeyOaIyRaamOtamaaDaaaleaacqaH4oqCca aIXaaabaGaaGymaaaakiaac+cacqGHciITcaWGmbWaaSbaaSqaaiaa ikdaaeqaaaGcbaGaeyOaIyRaamOtamaaDaaaleaacqaH4oqCcaaIXa aabaGaaGymaaaakiaac+cacqGHciITcaWGmbWaaSbaaSqaaiaaioda aeqaaaGcbaGaeyOaIyRaamOtamaaDaaaleaacqaH4oqCcaaIYaaaba GaaGymaaaakiaac+cacqGHciITcaWGmbWaaSbaaSqaaiaaikdaaeqa aaGcbaGaamOtamaaDaaaleaacqaH4oqCcaaIYaaabaGaaGymaaaaki aac+cacqGHciITcaWGmbWaaSbaaSqaaiaaikdaaeqaaaGcbaaabaGa eSO7I0eabaaabaaaaaGaay5waiaaw2faaaqaaiabg2da9maalaaaba GaaGymaaqaaiaaikdaaaWaamWaaeaafaqabeGbdaaaaeaacaWGIbWa aSbaaSqaaiaaikdaaeqaaOGaamitamaaBaaaleaacaaIZaaabeaaki abgkHiTiaadkgadaWgaaWcbaGaaG4maaqabaGccaWGmbWaaSbaaSqa aiaaikdaaeqaaaGcbaGaeyOeI0IaamOyamaaBaaaleaacaaIZaaabe aakiaadYeadaWgaaWcbaGaaGymaaqabaaakeaacaWGIbWaaSbaaSqa aiaaikdaaeqaaOGaamitamaaBaaaleaacaaIXaaabeaaaOqaaiaado gadaWgaaWcbaGaaGOmaaqabaGccaWGmbWaaSbaaSqaaiaaiodaaeqa aOGaeyOeI0Iaam4yamaaBaaaleaacaaIZaaabeaakiaadYeadaWgaa WcbaGaaGOmaaqabaaakeaacqGHsislcaWGJbWaaSbaaSqaaiaaioda aeqaaOGaamitamaaBaaaleaacaaIXaaabeaaaOqaaiaadogadaWgaa WcbaGaaGOmaaqabaGccaWGmbWaaSbaaSqaaiaaigdaaeqaaaGcbaGa amOyamaaBaaaleaacaaIZaaabeaakiaadYeadaWgaaWcbaGaaGOmaa qabaaakeaacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaamitamaaBaaa leaacaaIXaaabeaakiabgkHiTiaadkgadaWgaaWcbaGaaGymaaqaba GccaWGmbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOeI0IaamOyamaa BaaaleaacaaIXaaabeaakiaadYeadaWgaaWcbaGaaGOmaaqabaaake aacaWGJbWaaSbaaSqaaiaaiodaaeqaaOGaamitamaaBaaaleaacaaI YaaabeaaaOqaaiaadogadaWgaaWcbaGaaG4maaqabaGccaWGmbWaaS baaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIXaaa beaakiaadYeadaWgaaWcbaGaaG4maaqabaaakeaacqGHsislcaWGJb WaaSbaaSqaaiaaigdaaeqaaOGaamitamaaBaaaleaacaaIYaaabeaa aOqaaiabgkHiTiaadkgadaWgaaWcbaGaaGOmaaqabaGccaWGmbWaaS baaSqaaiaaiodaaeqaaaGcbaGaamOyamaaBaaaleaacaaIXaaabeaa kiaadYeadaWgaaWcbaGaaG4maaqabaaakeaacaWGIbWaaSbaaSqaai aaigdaaeqaaOGaamitamaaBaaaleaacaaIYaaabeaakiabgkHiTiaa dkgadaWgaaWcbaGaaGOmaaqabaGccaWGmbWaaSbaaSqaaiaaigdaae qaaaGcbaGaeyOeI0Iaam4yamaaBaaaleaacaaIYaaabeaakiaadYea daWgaaWcbaGaaG4maaqabaaakeaacaWGJbWaaSbaaSqaaiaaigdaae qaaOGaamitamaaBaaaleaacaaIZaaabeaaaOqaaiaadogadaWgaaWc baGaaGymaaqabaGccaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0 Iaam4yamaaBaaaleaacaaIYaaabeaakiaadYeadaWgaaWcbaGaaGym aaqabaaaaaGccaGLBbGaayzxaaaaaaa@D0B5@

dL dx = L 1 / x 1 L 1 / x 2 L 2 / x 1 L 2 / x 2 L 3 / x 1 L 3 / x 2 = 1 2 A el b 1 c 1 b 2 c 2 b 3 c 3 2 A el = c 3 b 2 b 3 c 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWcaaqaaiaadsgacaWHmbaaba GaamizaiaahIhaaaGaeyypa0ZaamWaaeaafaqabeWacaaabaGaeyOa IyRaamitamaaBaaaleaacaaIXaaabeaakiaac+cacqGHciITcaWG4b WaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaamitamaaBaaaleaa caaIXaaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaaikdaae qaaaGcbaGaeyOaIyRaamitamaaBaaaleaacaaIYaaabeaakiaac+ca cqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyOaIyRaam itamaaBaaaleaacaaIYaaabeaakiaac+cacqGHciITcaWG4bWaaSba aSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamitamaaBaaaleaacaaIZa aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaGc baGaeyOaIyRaamitamaaBaaaleaacaaIZaaabeaakiaac+cacqGHci ITcaWG4bWaaSbaaSqaaiaaikdaaeqaaaaaaOGaay5waiaaw2faaiab g2da9maalaaabaGaaGymaaqaaiaaikdacaWGbbWaaSbaaSqaaiaadw gacaWGSbaabeaaaaGcdaWadaqaauaabeqadiaaaeaacaWGIbWaaSba aSqaaiaaigdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaaaO qaaiaadkgadaWgaaWcbaGaaGOmaaqabaaakeaacaWGJbWaaSbaaSqa aiaaikdaaeqaaaGcbaGaamOyamaaBaaaleaacaaIZaaabeaaaOqaai aadogadaWgaaWcbaGaaG4maaqabaaaaaGccaGLBbGaayzxaaGaaGPa VlaaykW7aeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIYaGaamyqamaa BaaaleaacaWGLbGaamiBaaqabaGccqGH9aqpcaWGJbWaaSbaaSqaai aaiodaaeqaaOGaamOyamaaBaaaleaacaaIYaaabeaakiabgkHiTiaa dkgadaWgaaWcbaGaaG4maaqabaGccaWGJbWaaSbaaSqaaiaaikdaae qaaaaaaa@97CD@

 

The displacement gradient, shear strain and curvatures are related to the nodal displacements and rotations by

 

u 3 / x 1 u 3 / x 2 T = B u u 3 1 θ 1 1 θ 2 1 u 3 2 θ 1 2 θ 2 2 u 3 3 θ 1 3 θ 2 3 γ 1 γ 2 T = B γ u 3 1 θ 1 1 θ 2 1 u 3 2 θ 1 2 θ 2 2 u 3 3 θ 1 3 θ 2 3 T κ 11 κ 22 κ 12 + κ 21 T = B κ u 3 1 θ 1 1 θ 2 1 u 3 2 θ 1 2 θ 2 2 u 3 3 θ 1 3 θ 2 3 T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaWadaqaauaabeqabiaaaeaacq GHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaOGaai4laiabgkGi2kaa dIhadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG1bWaaSbaaS qaaiaaiodaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaaGOm aaqabaaaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaOGaey ypa0JaaCOqamaaBaaaleaacqGHhis0caWG1baabeaakmaadmaabaqb aeqabeqcaaaaaeaacaWG1bWaa0baaSqaaiaaiodaaeaacaaIXaaaaa GcbaGaeqiUde3aa0baaSqaaiaaigdaaeaacaaIXaaaaaGcbaGaeqiU de3aa0baaSqaaiaaikdaaeaacaaIXaaaaaGcbaGaamyDamaaDaaale aacaaIZaaabaGaaGOmaaaaaOqaaiabeI7aXnaaDaaaleaacaaIXaaa baGaaGOmaaaaaOqaaiabeI7aXnaaDaaaleaacaaIYaaabaGaaGOmaa aaaOqaaiaadwhadaqhaaWcbaGaaG4maaqaaiaaiodaaaaakeaacqaH 4oqCdaqhaaWcbaGaaGymaaqaaiaaiodaaaaakeaacqaH4oqCdaqhaa WcbaGaaGOmaaqaaiaaiodaaaaaaaGccaGLBbGaayzxaaaabaWaamWa aeaafaqabeqacaaabaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaaGcba Gaeq4SdC2aaSbaaSqaaiaaikdaaeqaaaaaaOGaay5waiaaw2faamaa CaaaleqabaGaamivaaaakiabg2da9iaahkeadaWgaaWcbaGaeq4SdC gabeaakmaadmaabaqbaeqabeqcaaaaaeaacaWG1bWaa0baaSqaaiaa iodaaeaacaaIXaaaaaGcbaGaeqiUde3aa0baaSqaaiaaigdaaeaaca aIXaaaaaGcbaGaeqiUde3aa0baaSqaaiaaikdaaeaacaaIXaaaaaGc baGaamyDamaaDaaaleaacaaIZaaabaGaaGOmaaaaaOqaaiabeI7aXn aaDaaaleaacaaIXaaabaGaaGOmaaaaaOqaaiabeI7aXnaaDaaaleaa caaIYaaabaGaaGOmaaaaaOqaaiaadwhadaqhaaWcbaGaaG4maaqaai aaiodaaaaakeaacqaH4oqCdaqhaaWcbaGaaGymaaqaaiaaiodaaaaa keaacqaH4oqCdaqhaaWcbaGaaGOmaaqaaiaaiodaaaaaaaGccaGLBb GaayzxaaWaaWbaaSqabeaacaWGubaaaaGcbaWaamWaaeaafaqabeqa daaabaGaeqOUdS2aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabeQ 7aRnaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqaH6oWAdaWgaaWc baGaaGymaiaaikdaaeqaaOGaey4kaSIaeqOUdS2aaSbaaSqaaiaaik dacaaIXaaabeaaaaaakiaawUfacaGLDbaadaahaaWcbeqaaiaadsfa aaGccqGH9aqpcaWHcbWaaSbaaSqaaiabeQ7aRbqabaGcdaWadaqaau aabeqabKaaaaaabaGaamyDamaaDaaaleaacaaIZaaabaGaaGymaaaa aOqaaiabeI7aXnaaDaaaleaacaaIXaaabaGaaGymaaaaaOqaaiabeI 7aXnaaDaaaleaacaaIYaaabaGaaGymaaaaaOqaaiaadwhadaqhaaWc baGaaG4maaqaaiaaikdaaaaakeaacqaH4oqCdaqhaaWcbaGaaGymaa qaaiaaikdaaaaakeaacqaH4oqCdaqhaaWcbaGaaGOmaaqaaiaaikda aaaakeaacaWG1bWaa0baaSqaaiaaiodaaeaacaaIZaaaaaGcbaGaeq iUde3aa0baaSqaaiaaigdaaeaacaaIZaaaaaGcbaGaeqiUde3aa0ba aSqaaiaaikdaaeaacaaIZaaaaaaaaOGaay5waiaaw2faamaaCaaale qabaGaamivaaaaaaaa@C590@

B u = L 1 x 1 N θ1 1 x 1 N θ2 1 x 1 L 2 x 1 N θ1 2 x 1 N θ2 2 x 1 L 3 x 1 N θ1 3 x 1 N θ2 3 x 1 L 1 x 2 N θ1 1 x 2 N θ2 1 x 2 L 2 x 2 N θ1 2 x 2 N θ2 2 x 2 L 3 x 2 N θ1 3 x 2 N θ2 3 x 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqamaaBaaaleaacqGHhis0caWG1b aabeaakiabg2da9maadmaabaqbaeqabiqcaaaaaeaadaWcaaqaaiab gkGi2kaadYeadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaaigdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaamOt amaaDaaaleaacqaH4oqCcaaIXaaabaGaaGymaaaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaaGymaaqabaaaaaGcbaWaaSaaaeaacqGHciIT caWGobWaa0baaSqaaiabeI7aXjaaikdaaeaacaaIXaaaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaakeaadaWcaaqaaiab gkGi2kaadYeadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaaigdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaamOt amaaDaaaleaacqaH4oqCcaaIXaaabaGaaGOmaaaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaaGymaaqabaaaaaGcbaWaaSaaaeaacqGHciIT caWGobWaa0baaSqaaiabeI7aXjaaikdaaeaacaaIYaaaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaakeaadaWcaaqaaiab gkGi2kaadYeadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaaigdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaamOt amaaDaaaleaacqaH4oqCcaaIXaaabaGaaG4maaaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaaGymaaqabaaaaaGcbaWaaSaaaeaacqGHciIT caWGobWaa0baaSqaaiabeI7aXjaaikdaaeaacaaIZaaaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaakeaadaWcaaqaaiab gkGi2kaadYeadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaaikdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaamOt amaaDaaaleaacqaH4oqCcaaIXaaabaGaaGymaaaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaaGOmaaqabaaaaaGcbaWaaSaaaeaacqGHciIT caWGobWaa0baaSqaaiabeI7aXjaaikdaaeaacaaIXaaaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaaakeaadaWcaaqaaiab gkGi2kaadYeadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaaikdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaamOt amaaDaaaleaacqaH4oqCcaaIXaaabaGaaGOmaaaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaaGOmaaqabaaaaaGcbaWaaSaaaeaacqGHciIT caWGobWaa0baaSqaaiabeI7aXjaaikdaaeaacaaIYaaaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaaakeaadaWcaaqaaiab gkGi2kaadYeadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4b WaaSbaaSqaaiaaikdaaeqaaaaaaOqaamaalaaabaGaeyOaIyRaamOt amaaDaaaleaacqaH4oqCcaaIXaaabaGaaG4maaaaaOqaaiabgkGi2k aadIhadaWgaaWcbaGaaGOmaaqabaaaaaGcbaWaaSaaaeaacqGHciIT caWGobWaa0baaSqaaiabeI7aXjaaikdaaeaacaaIZaaaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaaaaaGccaGLBbGaayzx aaaaaa@CAE7@

B γ = B u + 0 0 L 1 0 0 L 2 0 0 L 3 0 L 1 0 0 L 2 0 0 L 3 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqamaaBaaaleaacqaHZoWzaeqaaO Gaeyypa0JaaCOqamaaBaaaleaacqGHhis0caWG1baabeaakiabgUca RmaadmaabaqbaeqabiqcaaaaaeaacaaIWaaabaGaaGimaaqaaiaadY eadaWgaaWcbaGaaGymaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaa dYeadaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqaai aadYeadaWgaaWcbaGaaG4maaqabaaakeaacaaIWaaabaGaeyOeI0Ia amitamaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaaba GaeyOeI0IaamitamaaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaa caaIWaaabaGaeyOeI0IaamitamaaBaaaleaacaaIZaaabeaaaOqaai aaicdaaaaacaGLBbGaayzxaaaaaa@5119@

 


The internal forces follow as

M 11 M 22 M 12 T = D κ κ 11 κ 22 κ 12 + κ 21 T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeqadaaabaGaamytam aaBaaaleaacaaIXaGaaGymaaqabaaakeaacaWGnbWaaSbaaSqaaiaa ikdacaaIYaaabeaaaOqaaiaad2eadaWgaaWcbaGaaGymaiaaikdaae qaaaaaaOGaay5waiaaw2faamaaCaaaleqabaGaamivaaaakiabg2da 9iaahseadaWgaaWcbaGaeqOUdSgabeaakmaadmaabaqbaeqabeWaaa qaaiabeQ7aRnaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaH6oWA daWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaeqOUdS2aaSbaaSqaai aaigdacaaIYaaabeaakiabgUcaRiabeQ7aRnaaBaaaleaacaaIYaGa aGymaaqabaaaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaa aa@508D@

V 1 V 2 T = D γ γ 1 γ 2 T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeqacaaabaGaamOvam aaBaaaleaacaaIXaaabeaaaOqaaiaadAfadaWgaaWcbaGaaGOmaaqa baaaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaOGaeyypa0 JaaCiramaaBaaaleaacqaHZoWzaeqaaOWaamWaaeaafaqabeqacaaa baGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaaGcbaGaeq4SdC2aaSbaaS qaaiaaikdaaeqaaaaaaOGaay5waiaaw2faamaaCaaaleqabaGaamiv aaaaaaa@436E@

D κ = E h 3 12(1 ν 2 ) 1 ν 0 ν 1 0 0 0 (1ν)/2 D γ =2βhμ 1 0 0 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiramaaBaaaleaacqaH6oWAaeqaaO Gaeyypa0ZaaSaaaeaacaWGfbGaamiAamaaCaaaleqabaGaaG4maaaa aOqaaiaaigdacaaIYaGaaiikaiaaigdacqGHsislcqaH9oGBdaahaa WcbeqaaiaaikdaaaGccaGGPaaaamaadmaabaqbaeqabmWaaaqaaiaa igdaaeaacqaH9oGBaeaacaaIWaaabaGaeqyVd4gabaGaaGymaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaacIcacaaIXaGaeyOeI0Ia eqyVd4Maaiykaiaac+cacaaIYaaaaaGaay5waiaaw2faaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaC iramaaBaaaleaacqaHZoWzaeqaaOGaeyypa0JaaGOmaiabek7aIjaa dIgacqaH8oqBdaWadaqaauaabeqaciaaaeaacaaIXaaabaGaaGimaa qaaiaaicdaaeaacaaIXaaaaaGaay5waiaaw2faaaaa@764E@

 

With these definitions, the principle of virtual work reduces to a system of linear equations

KU=FK= elements k κ + β * k γ + k T F= nodes f n + elements r el MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4saiaahwfacqGH9aqpcaWHgbGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaC4saiabg2da9maaqafabaGa aC4AamaaBaaaleaacqaH6oWAaeqaaOGaey4kaSIaeqOSdi2aaSbaaS qaaiaacQcaaeqaaOGaaC4AamaaBaaaleaacqaHZoWzaeqaaOGaey4k aSIaaC4AamaaBaaaleaacaWGubaabeaakiaaykW7caaMc8UaaGPaVd WcbaGaamyzaiaadYgacaWGLbGaamyBaiaadwgacaWGUbGaamiDaiaa dohaaeqaniabggHiLdGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaCOraiabg2da9maaqafabaGaaCOzamaaBa aaleaacaWGUbaabeaakiaaykW7caaMc8UaaGPaVdWcbaGaamOBaiaa d+gacaWGKbGaamyzaiaadohaaeqaniabggHiLdGccqGHRaWkdaaeqb qaaiaahkhadaWgaaWcbaGaamyzaiaadYgaaeqaaOGaaGPaVlaaykW7 caaMc8oaleaacaWGLbGaamiBaiaadwgacaWGTbGaamyzaiaad6gaca WG0bGaam4Caaqab0GaeyyeIuoaaaa@AB48@

where U is a vector of unknown nodal displacements and rotations, F is a vector of nodal forces and moments, and

k κ = A el B κ T D κ B κ dA A el 3 i B κ T ( ξ i ) D κ B κ ( ξ i ) k γ = A el B γ T D γ B γ dA A el 3 i B γ T ( ξ i ) D γ B γ ( ξ i ) k T = A el B u T T B u dA A el 3 i B u T ( ξ i )T B u ( ξ i ) r el = A el N T pdA A el 3 i N T ( ξ i )p MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHRbWaaSbaaSqaaiabeQ7aRb qabaGccqGH9aqpdaWdXbqaaiaahkeadaqhaaWcbaGaeqOUdSgabaGa amivaaaakiaahseadaWgaaWcbaGaeqOUdSgabeaakiaahkeadaWgaa WcbaGaeqOUdSgabeaakiaadsgacaWGbbaaleaacaWGbbWaaSbaaWqa aiaadwgacaWGSbaabeaaaSqaaaqdcqGHRiI8aOGaeyisIS7aaSaaae aacaWGbbWaaSbaaSqaaiaadwgacaWGSbaabeaaaOqaaiaaiodaaaWa aabuaeaacaWHcbWaa0baaSqaaiabeQ7aRbqaaiaadsfaaaGccaGGOa GaaCOVdmaaBaaaleaacaWGPbaabeaakiaacMcacaWHebWaaSbaaSqa aiabeQ7aRbqabaGccaWHcbWaaSbaaSqaaiabeQ7aRbqabaGccaGGOa GaaCOVdmaaBaaaleaacaWGPbaabeaakiaacMcaaSqaaiaadMgaaeqa niabggHiLdaakeaacaWHRbWaaSbaaSqaaiabeo7aNbqabaGccqGH9a qpdaWdXbqaaiaahkeadaqhaaWcbaGaeq4SdCgabaGaamivaaaakiaa hseadaWgaaWcbaGaeq4SdCgabeaakiaahkeadaWgaaWcbaGaeq4SdC gabeaakiaadsgacaWGbbaaleaacaWGbbWaaSbaaWqaaiaadwgacaWG SbaabeaaaSqaaaqdcqGHRiI8aOGaeyisIS7aaSaaaeaacaWGbbWaaS baaSqaaiaadwgacaWGSbaabeaaaOqaaiaaiodaaaWaaabuaeaacaWH cbWaa0baaSqaaiabeo7aNbqaaiaadsfaaaGccaGGOaGaaCOVdmaaBa aaleaacaWGPbaabeaakiaacMcacaWHebWaaSbaaSqaaiabeo7aNbqa baGccaWHcbWaaSbaaSqaaiabeo7aNbqabaGccaGGOaGaaCOVdmaaBa aaleaacaWGPbaabeaakiaacMcaaSqaaiaadMgaaeqaniabggHiLdaa keaacaWHRbWaaSbaaSqaaiaadsfaaeqaaOGaeyypa0Zaa8qCaeaaca WHcbWaa0baaSqaaiabgEGirlaadwhaaeaacaWGubaaaOGaaCivaiaa hkeadaWgaaWcbaGaey4bIeTaamyDaaqabaGccaWGKbGaamyqaaWcba GaamyqamaaBaaameaacaWGLbGaamiBaaqabaaaleaaa0Gaey4kIipa kiabgIKi7oaalaaabaGaamyqamaaBaaaleaacaWGLbGaamiBaaqaba aakeaacaaIZaaaamaaqafabaGaaCOqamaaDaaaleaacqGHhis0caWG 1baabaGaamivaaaakiaacIcacaWH+oWaaSbaaSqaaiaadMgaaeqaaO GaaiykaiaahsfacaWHcbWaaSbaaSqaaiabgEGirlaadwhaaeqaaOGa aiikaiaah67adaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaacaWGPb aabeqdcqGHris5aaGcbaGaaCOCamaaBaaaleaacaWGLbGaamiBaaqa baGccqGH9aqpdaWdXbqaaiaah6eadaahaaWcbeqaaiaadsfaaaGcca WHWbGaamizaiaadgeaaSqaaiaadgeadaWgaaadbaGaamyzaiaadYga aeqaaaWcbaaaniabgUIiYdGccqGHijYUdaWcaaqaaiaadgeadaWgaa WcbaGaamyzaiaadYgaaeqaaaGcbaGaaG4maaaadaaeqbqaaiaah6ea daahaaWcbeqaaiaadsfaaaaabaGaamyAaaqab0GaeyyeIuoakiaacI cacaWH+oWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiaahchaaaaa@D288@

are the element stiffness matrix and force vector.  The integrals have been evaluated with a 3-point Gaussian quadrature scheme, with

ξ 1 =0.5( x 1 e 1 + y 1 e 2 )+0.5( x 2 e 1 + y 2 e 2 ) ξ 2 =0.5( x 2 e 1 + y 2 e 2 )+0.5( x 3 e 1 + y 3 e 2 ) ξ 3 =0.5( x 1 e 1 + y 1 e 2 )+0.5( x 3 e 1 + y 3 e 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWH+oWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaaGimaiaac6cacaaI1aGaaiikaiaadIhadaWgaaWc baGaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS IaamyEamaaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGOm aaqabaGccaGGPaGaey4kaSIaaGimaiaac6cacaaI1aGaaiikaiaadI hadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSIaamyEamaaBaaaleaacaaIYaaabeaakiaahwgadaWgaa WcbaGaaGOmaaqabaGccaGGPaaabaGaaCOVdmaaBaaaleaacaaIYaaa beaakiabg2da9iaaicdacaGGUaGaaGynaiaacIcacaWG4bWaaSbaaS qaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiabgUca RiaadMhadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaik daaeqaaOGaaiykaiabgUcaRiaaicdacaGGUaGaaGynaiaacIcacaWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabe aakiabgUcaRiaadMhadaWgaaWcbaGaaG4maaqabaGccaWHLbWaaSba aSqaaiaaikdaaeqaaOGaaiykaaqaaiaah67adaWgaaWcbaGaaG4maa qabaGccqGH9aqpcaaIWaGaaiOlaiaaiwdacaGGOaGaamiEamaaBaaa leaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRa WkcaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaCyzamaaBaaaleaacaaI YaaabeaakiaacMcacqGHRaWkcaaIWaGaaiOlaiaaiwdacaGGOaGaam iEamaaBaaaleaacaaIZaaabeaakiaahwgadaWgaaWcbaGaaGymaaqa baGccqGHRaWkcaWG5bWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaaBa aaleaacaaIYaaabeaakiaacMcaaaaa@856B@

A 1 point scheme will work as well.  The coefficient β * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdi2aaSbaaSqaaiaacQcaaeqaaa aa@335B@  is a numerical correction that improves the performance of the element.   Tessler and Hughes report that using

β * = 2 i=2,3,5,6,8,9 k ii (κ) 2 i=2,3,5,6,8,9 k ii (κ) + i=2,3,5,6,8,9 k ii (γ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOSdi2aaSbaaSqaaiaacQcaaeqaaO Gaeyypa0ZaaSaaaeaacaaIYaWaaabeaeaacaWGRbWaa0baaSqaaiaa dMgacaWGPbaabaGaaiikaiabeQ7aRjaacMcaaaaabaGaamyAaiabg2 da9iaaikdacaGGSaGaaG4maiaacYcacaaI1aGaaiilaiaaiAdacaGG SaGaaGioaiaacYcacaaI5aaabeqdcqGHris5aaGcbaGaaGOmamaaqa babaGaam4AamaaDaaaleaacaWGPbGaamyAaaqaaiaacIcacqaH6oWA caGGPaaaaaqaaiaadMgacqGH9aqpcaaIYaGaaiilaiaaiodacaGGSa GaaGynaiaacYcacaaI2aGaaiilaiaaiIdacaGGSaGaaGyoaaqab0Ga eyyeIuoakiabgUcaRmaaqababaGaam4AamaaDaaaleaacaWGPbGaam yAaaqaaiaacIcacqaHZoWzcaGGPaaaaaqaaiaadMgacqGH9aqpcaaI YaGaaiilaiaaiodacaGGSaGaaGynaiaacYcacaaI2aGaaiilaiaaiI dacaGGSaGaaGyoaaqab0GaeyyeIuoaaaaaaa@6C15@

 

gives good results.


 

Example: A simple demonstration of both the Kirchhoff and Reissner-Mindlin elements are shown in the figure.  Fig. (a) compares the predictions of the Kirchhoff element for the deflection and rotation of a simply supported circular plate with radius R, thickness h, Young’s modulus E, and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  subjected to uniform pressure p with the exact solution (the mesh is shown inset).  The FEA predictions are within 0.1% of the exact result.   Fig. (b) shows the predicted deflection of circular Reissner-Mindlin plate, for several values of the normalized ratio of bending to shear stiffness E h 2 /(βμ R 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadIgadaahaaWcbeqaaiaaik daaaGccaGGVaGaaiikaiabek7aIjabeY7aTjaadkfadaahaaWcbeqa aiaaikdaaaGccaGGPaaaaa@3AB7@ .   The shear deformation increases the deflection slightly for E h 2 /(βμ R 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaadIgadaahaaWcbeqaaiaaik daaaGccaGGVaGaaiikaiabek7aIjabeY7aTjaadkfadaahaaWcbeqa aiaaikdaaaGccaGGPaaaaa@3AB7@  >0.1 but the effect of shearing for the circular plate is less pronounced than the corresponding behavior of a cantilever beam discussed in the preceding section.

 

The codes that plot these graphs are provided in the files named FEM_plate_Kirchhoff.m and FEM_plate_Mindlin.m at

https://github.com/albower/Applied_Mechanics_of_Solids/