8.6 Advanced element formulations MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbeqcLbCaqaaaaaaaaaWdbiaa=nbiaa a@32CD@  Incompatible modes; reduced integration; B-bar and hybrid elements

 

Techniques for interpolating the displacement field within 2D and 3D finite elements were discussed in Section 8.1.9 and 8.1.10.  In addition, methods for evaluating the volume or area integrals in the principle of virtual work were discussed in Section 8.1.11.   These procedures work well for most applications, but there are situations where the simple element formulations can give very inaccurate results.  In this section

 

1. We illustrate some of the unexpected difficulties that can arise in apparently perfectly well designed finite element solutions to boundary value problems;

 

2. We describe a few more sophisticated elements that have been developed to solve these problems.

 

We focus in particular on `Locking’ phenomena.  Finite elements are said to `lock’ if they exhibit an unphysically stiff response to deformation.  Locking can occur for many different reasons. The most common causes are (i) the governing equations you are trying to solve are poorly conditioned, which leads to an ill conditioned system of finite element equations; (ii) the element interpolation functions are unable to approximate accurately the strain distribution in the solid, so the solution converges very slowly as the mesh size is reduced; (iii) in certain element formulations (especially beam, plate and shell elements) displacements and their derivatives are interpolated separately. Locking can occur in these elements if the interpolation functions for displacements and their derivatives are not consistent.

 

 

 

8.6.1 Shear locking and incompatible mode elements

 

Shear locking can be illustrated by attempting to find a finite element solution to the simple boundary value problem illustrated in the figure. Consider a cantilever beam, with length L, height 2a and out-of-plane thickness b, as shown in the figure.  The top and bottom of the beam x 2 =±a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaaki abg2da9iabgglaXkaadggaaaa@36A9@  are traction free, the left hand end is subjected to a resultant force P, and the right hand end is clamped.  Assume that b<<a, so that a state of plane stress is developed in the beam.  The analytical solution to this problem is given in Section 5.2.4.

 

The figure below compares this result to a finite element solution, obtained with standard 4 noded linear quadrilateral plane stress elements.  Results are shown for two different ratios of a/L MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyyaiaac+cacaWGmbaaaa@334A@

 


 

 

For a short, (or thick) beam, the finite element and exact solutions agree nearly perfectly.   For the long (or thin) beam, however, the finite element solution is very poor MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  even though the mesh resolution is unchanged. The error in the finite element solution occurs because the standard 4 noded quadrilateral elements cannot accurately approximate the strain distribution associated with bending.  The phenomenon is known as ‘shear locking,’ because the element interpolation functions give rise to large, unphysical shear strains in bent elements, which makes them stiffer than they should be.  The solution would eventually converge if a large number of elements were added along the length of the beam. The elements would have to be roughly square, which would require about 133 elements along the length of the beam, giving a total mesh size of about 500 elements. 

 

Shear locking is therefore relatively benign, since it can be detected by refining the mesh, and can be avoided by using a sufficiently fine mesh.  However, finite element analysts sometimes cannot resist the temptation to reduce computational cost by using elongated elements, which can introduce errors.

 

Shear locking can also be avoided by using more sophisticated element interpolation functions that can accurately approximate bending. `Incompatible Mode’ elements do this by adding an additional strain distribution to the element.  The elements are called `incompatible’ because the strain is not required to be compatible with the displacement interpolation functions. The approach is conceptually straightforward:

 

1. The displacement fields in the element are interpolated using the standard scheme, by setting

u i = a=1 N e N a ( ξ j ) u i a δ v i (x)= a=1 n N a (x)δ v i a x i = a=1 N e N a ( ξ j ) x i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki abg2da9maaqahabaGaamOtamaaCaaaleqabaGaamyyaaaakiaacIca cqaH+oaEdaWgaaWcbaGaamOAaaqabaGccaGGPaGaamyDamaaDaaale aacaWGPbaabaGaamyyaaaaaeaacaWGHbGaeyypa0JaaGymaaqaaiaa d6eadaWgaaadbaGaamyzaaqabaaaniabggHiLdGccaaMc8UaaGPaVl aaykW7caaMc8UaeqiTdqMaamODamaaBaaaleaacaWGPbaabeaakiaa cIcacaWH4bGaaiykaiabg2da9maaqahabaGaamOtamaaCaaaleqaba GaamyyaaaakiaacIcacaWH4bGaaiykaiabes7aKjaadAhadaqhaaWc baGaamyAaaqaaiaadggaaaaabaGaamyyaiabg2da9iaaigdaaeaaca WGUbaaniabggHiLdGccaaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqa aiaadMgaaeqaaOGaeyypa0ZaaabCaeaacaWGobWaaWbaaSqabeaaca WGHbaaaOGaaiikaiabe67a4naaBaaaleaacaWGQbaabeaakiaacMca caWG4bWaa0baaSqaaiaadMgaaeaacaWGHbaaaaqaaiaadggacqGH9a qpcaaIXaaabaGaamOtamaaBaaameaacaWGLbaabeaaa0GaeyyeIuoa aaa@77D7@  

where N a ( ξ j ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOtamaaCaaaleqabaGaamyyaaaaki aacIcacqaH+oaEdaWgaaWcbaGaamOAaaqabaGccaGGPaaaaa@3711@  are the shape functions listed in Sections 8.1.9 or 8.1.10, ξ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOVdG3aaSbaaSqaaiaadMgaaeqaaa aa@33BD@  are a set of local coordinates in the element, u i a , x i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGPbaabaGaam yyaaaakiaacYcacaWG4bWaa0baaSqaaiaadMgaaeaacaWGHbaaaaaa @3793@  denote the displacement values and coordinates of the nodes on the element, and N e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOtamaaBaaaleaacaWGLbaabeaaaa a@32C9@  is the number of nodes on the element.

 

2. The Jacobian matrix for the interpolation functions, its determinant, and its inverse are defined in the usual way

x i ξ j = a=1 N e N a (ξ) ξ j x i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWG4bWaaSbaaS qaaiaadMgaaeqaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiaadQga aeqaaaaakiabg2da9maaqahabaWaaSaaaeaacqGHciITcaWGobWaaW baaSqabeaacaWGHbaaaOGaaiikaiabe67a4jaacMcaaeaacqGHciIT cqaH+oaEdaWgaaWcbaGaamOAaaqabaaaaOGaamiEamaaDaaaleaaca WGPbaabaGaamyyaaaaaeaacaWGHbGaeyypa0JaaGymaaqaaiaad6ea daWgaaadbaGaamyzaaqabaaaniabggHiLdaaaa@4E61@     J=det x i ξ j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDamaabmaabaWaaSaaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadMga aeqaaaGcbaGaeyOaIyRaeqOVdG3aaSbaaSqaaiaadQgaaeqaaaaaaO GaayjkaiaawMcaaaaa@3EEE@          ξ j x i = x ξ ji 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaH+oaEdaWgaa WcbaGaamOAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadMga aeqaaaaakiabg2da9maabmaabaWaaSaaaeaacqGHciITcaWG4baaba GaeyOaIyRaeqOVdGhaaaGaayjkaiaawMcaamaaDaaaleaacaWGQbGa amyAaaqaaiabgkHiTiaaigdaaaaaaa@44A2@

 

3. The usual expression for displacement gradient in the element is replaced by

u i x j = a=1 N e N a (ξ) ξ m u i a + k=1 p J(0) J(ξ) α i (k) δ km ξ k ξ m x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWG1bWaaSbaaS qaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaa beaaaaGccqGH9aqpdaqadaqaamaaqahabaWaaSaaaeaacqGHciITca WGobWaaWbaaSqabeaacaWGHbaaaOGaaiikaiabe67a4jaacMcaaeaa cqGHciITcqaH+oaEdaWgaaWcbaGaamyBaaqabaaaaaqaaiaadggacq GH9aqpcaaIXaaabaGaamOtamaaBaaameaacaWGLbaabeaaa0Gaeyye IuoakiaadwhadaqhaaWcbaGaamyAaaqaaiaadggaaaGccqGHRaWkda aeWbqaamaalaaabaGaamOsaiaacIcacaaIWaGaaiykaaqaaiaadQea caGGOaGaeqOVdGNaaiykaaaaaSqaaiaadUgacqGH9aqpcaaIXaaaba GaamiCaaqdcqGHris5aOGaeqySde2aa0baaSqaaiaadMgaaeaacaGG OaGaam4AaiaacMcaaaGccqaH0oazdaWgaaWcbaGaam4Aaiaad2gaae qaaOGaeqOVdG3aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaWa aSaaaeaacqGHciITcqaH+oaEdaWgaaWcbaGaamyBaaqabaaakeaacq GHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaaaaa@706E@

where p=2 for a 2D problem and p=3 for a 3D problem, α i (k) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aa0baaSqaaiaadMgaaeaaca GGOaGaam4AaiaacMcaaaaaaa@35E3@  are a set of unknown displacement gradients in the element, which must be determined as part of the solution.

 

4. Similarly, the virtual displacement gradient is written as

δ v i x j = a=1 N e N a (ξ) ξ m δ v i a + k=1 p J(0) J(ξ) δ α i (k) δ km ξ k ξ m x j MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcqaH0oazcaWG2b WaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa caWGQbaabeaaaaGccqGH9aqpdaqadaqaamaaqahabaWaaSaaaeaacq GHciITcaWGobWaaWbaaSqabeaacaWGHbaaaOGaaiikaiabe67a4jaa cMcaaeaacqGHciITcqaH+oaEdaWgaaWcbaGaamyBaaqabaaaaaqaai aadggacqGH9aqpcaaIXaaabaGaamOtamaaBaaameaacaWGLbaabeaa a0GaeyyeIuoakiabes7aKjaadAhadaqhaaWcbaGaamyAaaqaaiaadg gaaaGccqGHRaWkdaaeWbqaamaalaaabaGaamOsaiaacIcacaaIWaGa aiykaaqaaiaadQeacaGGOaGaeqOVdGNaaiykaaaaaSqaaiaadUgacq GH9aqpcaaIXaaabaGaamiCaaqdcqGHris5aOGaeqiTdqMaeqySde2a a0baaSqaaiaadMgaaeaacaGGOaGaam4AaiaacMcaaaGccqaH0oazda WgaaWcbaGaam4Aaiaad2gaaeqaaOGaeqOVdG3aaSbaaSqaaiaadUga aeqaaaGccaGLOaGaayzkaaWaaSaaaeaacqGHciITcqaH+oaEdaWgaa WcbaGaamyBaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadQga aeqaaaaaaaa@755E@

where δ α i (k) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaeqySde2aa0baaSqaaiaadM gaaeaacaGGOaGaam4AaiaacMcaaaaaaa@3788@  is a variation in the internal displacement gradient field for the element.  

 

5. These expressions are then substituted into the virtual work equation, which must now be satisfied for all possible values of virtual nodal displacements δ v i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaDaaaleaacaWGPb aabaGaamyyaaaaaaa@3581@  and virtual displacement gradients δ α i (k) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaeqySde2aa0baaSqaaiaadM gaaeaacaGGOaGaam4AaiaacMcaaaaaaa@3788@ .  At first sight this procedure appears to greatly increase the size of the global stiffness matrix, because a set of unknown displacement gradient components must be calculated for each element.  However, the unknown α i (k) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqySde2aa0baaSqaaiaadMgaaeaaca GGOaGaam4AaiaacMcaaaaaaa@35E3@  are local to each element, and can be eliminated while computing the element stiffness matrix. 

 

 

As always actual computations are best accomplished by re-writing the calculations as matrix operations.   We will illustrate the procedure using 2D (plane stress or strain) elements as an example; the modification to 3D is straightforward.   The calculation follows the steps in Section 8.1.13, but the matrix B is replaced by one that maps displacements and the additional element degrees of freedom onto the strain vector, as ε=B [u,α] T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyTdiabg2da9iaahkeacaGGBbGaaC yDaiaacYcacaWHXoGaaiyxamaaCaaaleqabaGaamivaaaaaaa@39A3@ , where

ε= [ ε 11 , ε 22 ,2 ε 12 ] T u= u 1 1 , u 2 1 , u 1 2 , u 2 2 ... α= α 1 1 , α 2 1 , α 1 2 , α 2 2 ... MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyTdiabg2da9iaacUfacqaH1oqzda WgaaWcbaGaaGymaiaaigdaaeqaaOGaaiilaiabew7aLnaaBaaaleaa caaIYaGaaGOmaaqabaGccaGGSaGaaGOmaiabew7aLnaaBaaaleaaca aIXaGaaGOmaaqabaGccaGGDbWaaWbaaSqabeaacaWGubaaaOGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caWH1bGaeyypa0ZaamWaaeaacaWG1bWaa0baaSqa aiaaigdaaeaacaaIXaaaaOGaaiilaiaadwhadaqhaaWcbaGaaGOmaa qaaiaaigdaaaGccaGGSaGaamyDamaaDaaaleaacaaIXaaabaGaaGOm aaaakiaacYcacaWG1bWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaai Olaiaac6cacaGGUaaacaGLBbGaayzxaaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caWHXoGaeyypa0ZaamWaaeaacqaHXoqydaqh aaWcbaGaaGymaaqaaiaaigdaaaGccaGGSaGaeqySde2aa0baaSqaai aaikdaaeaacaaIXaaaaOGaaiilaiabeg7aHnaaDaaaleaacaaIXaaa baGaaGOmaaaakiaacYcacqaHXoqydaqhaaWcbaGaaGOmaaqaaiaaik daaaGccaGGUaGaaiOlaiaac6caaiaawUfacaGLDbaaaaa@90ED@

B= N 1 x 1 0 N 2 x 1 0 N 3 x 1 0 0 N 1 x 2 0 N 2 x 2 0 N 3 x 2 N 1 x 2 N 1 x 1 N 2 x 2 N 2 x 1 N 3 x 2 N 3 x 1 ....... J(0) J(ξ) ξ 1 ξ 1 x 1 0 J(0) J(ξ) ξ 2 ξ 2 x 1 0 0 J(0) J(ξ) ξ 1 ξ 1 x 2 0 J(0) J(ξ) ξ 2 ξ 2 x 2 J(0) J(ξ) ξ 1 ξ 1 x 2 J(0) J(ξ) ξ 1 ξ 1 x 1 J(0) J(ξ) ξ 2 ξ 2 x 2 J(0) J(ξ) ξ 2 ξ 2 x 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqaiabg2da9maadmaabaqbaeqabm GbaaaabaWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaaIXaaa aaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaakeaaca aIWaaabaWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaaIYaaa aaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaakeaaca aIWaaabaWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaaIZaaa aaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaakeaaca aIWaaabaGaaGimaaqaamaalaaabaGaeyOaIyRaamOtamaaCaaaleqa baGaaGymaaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqaba aaaaGcbaGaaGimaaqaamaalaaabaGaeyOaIyRaamOtamaaCaaaleqa baGaaGOmaaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqaba aaaaGcbaGaaGimaaqaamaalaaabaGaeyOaIyRaamOtamaaCaaaleqa baGaaG4maaaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqaba aaaaGcbaWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaaIXaaa aaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaaakeaada WcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaaigdaaaaakeaacqGH ciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaaaOqaamaalaaabaGaey OaIyRaamOtamaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadIha daWgaaWcbaGaaGOmaaqabaaaaaGcbaWaaSaaaeaacqGHciITcaWGob WaaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa caaIXaaabeaaaaaakeaadaWcaaqaaiabgkGi2kaad6eadaahaaWcbe qaaiaaiodaaaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqa aaaaaOqaamaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGaaG4maa aaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaaaakiaa c6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cafaqabeWaea aaaeaadaWcaaqaaiaadQeacaGGOaGaaGimaiaacMcaaeaacaWGkbGa aiikaiaah67acaGGPaaaaiabe67a4naaBaaaleaacaaIXaaabeaakm aalaaabaGaeyOaIyRaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaGcbaGa eyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaaakeaacaaIWaaaba WaaSaaaeaacaWGkbGaaiikaiaaicdacaGGPaaabaGaamOsaiaacIca caWH+oGaaiykaaaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGcdaWcaa qaaiabgkGi2kabe67a4naaBaaaleaacaaIYaaabeaaaOqaaiabgkGi 2kaadIhadaWgaaWcbaGaaGymaaqabaaaaaGcbaGaaGimaaqaaiaaic daaeaadaWcaaqaaiaadQeacaGGOaGaaGimaiaacMcaaeaacaWGkbGa aiikaiaah67acaGGPaaaaiabe67a4naaBaaaleaacaaIXaaabeaakm aalaaabaGaeyOaIyRaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaGcbaGa eyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaaakeaacaaIWaaaba WaaSaaaeaacaWGkbGaaiikaiaaicdacaGGPaaabaGaamOsaiaacIca caWH+oGaaiykaaaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGcdaWcaa qaaiabgkGi2kabe67a4naaBaaaleaacaaIYaaabeaaaOqaaiabgkGi 2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaaGcbaWaaSaaaeaacaWGkb GaaiikaiaaicdacaGGPaaabaGaamOsaiaacIcacaWH+oGaaiykaaaa cqaH+oaEdaWgaaWcbaGaaGymaaqabaGcdaWcaaqaaiabgkGi2kabe6 7a4naaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWc baGaaGOmaaqabaaaaaGcbaWaaSaaaeaacaWGkbGaaiikaiaaicdaca GGPaaabaGaamOsaiaacIcacaWH+oGaaiykaaaacqaH+oaEdaWgaaWc baGaaGymaaqabaGcdaWcaaqaaiabgkGi2kabe67a4naaBaaaleaaca aIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaa aaGcbaWaaSaaaeaacaWGkbGaaiikaiaaicdacaGGPaaabaGaamOsai aacIcacaWH+oGaaiykaaaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGc daWcaaqaaiabgkGi2kabe67a4naaBaaaleaacaaIYaaabeaaaOqaai abgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaaGcbaWaaSaaaeaa caWGkbGaaiikaiaaicdacaGGPaaabaGaamOsaiaacIcacaWH+oGaai ykaaaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGcdaWcaaqaaiabgkGi 2kabe67a4naaBaaaleaacaaIYaaabeaaaOqaaiabgkGi2kaadIhada WgaaWcbaGaaGymaaqabaaaaaaaaOGaay5waiaaw2faaaaa@1484@

The standard procedure is then used to calculate an intermediate stiffness matrix that includes additional rows and columns arising from the incompatible modes

k ^ = I=1 N i B T DBJ w I r ^ = I=1 N i B T σJ w I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabC4AayaajaGaeyypa0ZaaabCaeaaca WHcbWaaWbaaSqabeaacaWGubaaaOGaaCiraiaahkeacaWGkbGaam4D amaaBaaaleaacaWGjbaabeaaaeaacaWGjbGaeyypa0JaaGymaaqaai aad6eadaWgaaadbaGaamyAaaqabaaaniabggHiLdGccaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlqahkhagaqcaiabg2da9maaqaha baGaaCOqamaaCaaaleqabaGaamivaaaakiaaho8acaWGkbGaam4Dam aaBaaaleaacaWGjbaabeaaaeaacaWGjbGaeyypa0JaaGymaaqaaiaa d6eadaWgaaadbaGaamyAaaqabaaaniabggHiLdGccaaMc8UaaGPaVl aaykW7caaMc8oaaa@6A64@

These matrices relate the degrees of freedom on the element by

k uu k uα k αu k αα u α = r u r α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaafaqabeGacaaabaGaaC4Aam aaCaaaleqabaGaamyDaiaadwhaaaaakeaacaWHRbWaaWbaaSqabeaa caWG1bGaeqySdegaaaGcbaGaaC4AamaaCaaaleqabaGaeqySdeMaam yDaaaaaOqaaiaahUgadaahaaWcbeqaaiabeg7aHjabeg7aHbaaaaaa kiaawUfacaGLDbaacaaMc8+aamWaaeaafaqabeGabaaabaGaaCyDaa qaaiaahg7aaaaacaGLBbGaayzxaaGaeyypa0JaaGPaVpaadmaabaqb aeqabiqaaaqaaiaahkhadaahaaWcbeqaaiaadwhaaaaakeaacaWHYb WaaWbaaSqabeaacqaHXoqyaaaaaaGccaGLBbGaayzxaaaaaa@5143@

where k uu MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4AamaaCaaaleqabaGaamyDaiaadw haaaaaaa@33F5@  is a (2nx2n) matrix, with n the number of nodes on the element and k αα MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4AamaaCaaaleqabaGaeqySdeMaeq ySdegaaaaa@353F@  is a 4x4 matrix.   We can use the last four rows to eliminate α MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCySdaaa@321D@ , with the result

k uu k uα k αα1 k αu u= r u k αα1 r α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaamWaaeaacaWHRbWaaWbaaSqabeaaca WG1bGaamyDaaaakiabgkHiTiaahUgadaahaaWcbeqaaiaadwhacqaH XoqyaaGccaWHRbWaaWbaaSqabeaacqaHXoqycqaHXoqycqGHsislca aIXaaaaOGaaC4AamaaCaaaleqabaGaeqySdeMaamyDaaaaaOGaay5w aiaaw2faaiaahwhacqGH9aqpcaWHYbWaaWbaaSqabeaacaWG1baaaO GaeyOeI0IaaC4AamaaCaaaleqabaGaeqySdeMaeqySdeMaeyOeI0Ia aGymaaaakiaahkhadaahaaWcbeqaaiabeg7aHbaaaaa@526B@

The usual 2nx2n element stiffness matrix (which only has displacements as degrees of freedom) and residual force are therefore

k el = k uu k uα k αα1 k αu u= r el = r u k αα1 r α MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHRbWaaWbaaSqabeaacaWGLb GaamiBaaaakiabg2da9maadmaabaGaaC4AamaaCaaaleqabaGaamyD aiaadwhaaaGccqGHsislcaWHRbWaaWbaaSqabeaacaWG1bGaeqySde gaaOGaaC4AamaaCaaaleqabaGaeqySdeMaeqySdeMaeyOeI0IaaGym aaaakiaahUgadaahaaWcbeqaaiabeg7aHjaadwhaaaaakiaawUfaca GLDbaacaWH1bGaeyypa0dabaGaaCOCamaaCaaaleqabaGaamyzaiaa dYgaaaGccqGH9aqpcaWHYbWaaWbaaSqabeaacaWG1baaaOGaeyOeI0 IaaC4AamaaCaaaleqabaGaeqySdeMaeqySdeMaeyOeI0IaaGymaaaa kiaahkhadaahaaWcbeqaaiabeg7aHbaaaaaa@5A91@

 

A sample small-strain, linear elastic code with incompatible mode elements Femlinelast_incompatible_modes.m can be downloaded from https://github.com/albower/Applied_Mechanics_of_Solids .

 

When run with the input file shear_locking_demo.txt, the codes produce the results shown in the figure below.  The incompatible modes clearly give a spectacular improvement in the performance of the element.

 


 

 

HEALTH WARNINGS: (i) The procedure outlined here only works for small-strain problems.  Finite strain versions exist but are somewhat more complicated.  (ii)  Adding strain variables to elements can dramatically improve their performance, but this procedure must be used with great care to ensure that the strain and displacement degrees of freedom are independent variables. For further details see Simo,  J. C., and M. S. Rifai, Int J. Num. Meth in Eng.  29, pp. 1595 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@ 1638, 1990. Simo,  J. C., and F. Armero, Int J. Num. Meth in Eng., 33, pp. 1413 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@ 1449, 1992.

 

 

 

8.6.2 Volumetric locking and reduced integration elements

 

Volumetric locking can be illustrated using a simple boundary value problem. Consider a long hollow cylinder with internal radius a and external radius b as shown in the figure.   The solid is made from a linear elastic material with Young’s modulus E MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraaaa@31AA@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ .  The cylinder is loaded by an internal pressure p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaBaaaleaacaWGHbaabeaaaa a@32E7@  and deforms in plane strain.  The analytical solution to this problem is given in Section 4.1.9.

 

The figure below compares the analytical solution to a finite element solution with standard 4 noded plane strain quadrilateral elements.  Results are shown for two values of Poisson’s ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@ .  The dashed lines show the analytical solution, while the solid line shows the FEA solution.

 


 

           

The two solutions agree well for ν=0.3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4Maeyypa0JaaGimaiaac6caca aIZaaaaa@35C7@ , but the finite element solution grossly underestimates the displacements as Poisson’s ratio is increased towards 0.5 (recall that the material is incompressible in the limit ν=0.5 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4Maeyypa0JaaGimaiaac6caca aI1aaaaa@35C9@  ).  In this limit, the finite element displacements tend to zero MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  this is known as `volumetric locking’

 

The error in the finite element solution occurs because the finite element interpolation functions are unable to properly approximate a volume preserving strain field. In the incompressible limit, a nonzero volumetric strain at any of the integration points gives rise to a very large contribution to the virtual power.  The interpolation functions can make the volumetric strain vanish at some, but not all, the integration points in the element. 

 

Volumetric locking is a much more serious problem than shear locking, because it cannot be avoided by refining the mesh.  In addition, all the standard fully integrated finite elements will lock in the incompressible limit; and some elements show very poor performance even for Poisson’s ratios as small as 0.45 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGimaiaac6cacaaI0aGaaGynaaaa@33C9@ .  Fortunately, most materials have Poisson’s ratios around 0.3 or less, so the standard elements can be used for most linear elasticity and small-strain plasticity problems.   To model rubbers, or to solve problems involving large plastic strains, the elements must be redesigned to avoid locking.

 

 

Reduced Integration is the simplest way to avoid locking.   The basic idea is simple: since the fully integrated elements cannot make the strain field volume preserving at all the integration points, it is tempting to reduce the number of integration points so that the constraint can be met.  `Reduced integration’ usually means that the element stiffness is integrated using an integration scheme that is one order less accurate than the standard scheme.   The number of reduced integration points for various element types is listed in Table 8.11.  The coordinates of the integration points are listed in the tables in Section 8.1.12.

 

HEALTH WARNING: Notice that the integration order cannot be reduced for the linear triangular and tetrahedral elements MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  these elements should not be used to model near incompressible materials, although in desperation you can a few such elements in regions where the solid cannot be meshed using quadrilaterals.

 

Remarkably, reduced integration completely resolves locking in some elements (the quadratic quadrilateral and brick), and even improves the accuracy of the element.  As an example, the leftmost figure below  shows the solution to the pressurized cylinder problem, using reduced integration (with 4 integration points) for 8 noded quadrilaterals.  With reduced integration, the analytical and finite element results are indistinguishable.


 

 

Reduced integration does not work in 4 noded quadrilateral elements or 8 noded brick elements.  For example, the right hand figure above  shows the solution to the pressure vessel problem with linear (4 noded) quadrilateral elements with reduced integration (1 integration point).  The displacements have been scaled down to show the hourglassing MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  plotted to true scale the displacements just look like complete garbage.  The solution is clearly a disaster.  The error occurs because the stiffness matrix is nearly singular MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@   the system of equations includes a weakly constrained deformation mode. This   phenomenon is known as ‘hourglassing’ because of the characteristic shape of the spurious deformation mode. 

 

 

Selectively Reduced Integration can be used to cure hourglassing.   The procedure is illustrated most clearly by modifying the formulation for static linear elasticity. To implement the method: 

 

1. The volume integral in the virtual work principle is separated into a deviatoric and volumetric part by writing

R σ ij δ ε ij d V 0 = R σ ij δ ε ij σ kk 3 δ ε qq d V 0 + R σ kk 3 δ ε qq d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaGgaacqaHdpWCkmaaBaaale aacaWGPbGaamOAaaqabaGccqaH0oazcqaH1oqzdaWgaaWcbaGaamyA aiaadQgaaeqaaKaaGkaaykW7caWGKbGaamOvaOWaaSbaaKqaGfaaca aIWaaabeaaaeaacaWGsbaabeqcdaMaey4kIipajaaycqGH9aqpkmaa pefajaaObaGcdaqadaqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccqaH0oazcqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyOeI0YaaSaaaeaacqaHdpWCdaWgaaWcbaGaam4AaiaadUgaaeqaaa GcbaGaaG4maaaacqaH0oazcqaH1oqzdaWgaaWcbaGaamyCaiaadgha aeqaaaGccaGLOaGaayzkaaqcaaQaaGPaVlaadsgacaWGwbGcdaWgaa qcbawaaiaaicdaaeqaaaqaaiaadkfaaeqajmaycqGHRiI8aOGaey4k aSYaa8quaKaaGgaakmaalaaajaaObaGaeq4WdmNcdaWgaaqcbaAaai aadUgacaWGRbaabeaaaKaaGgaacaaIZaaaaiabes7aKjabew7aLPWa aSbaaKqaGgaacaWGXbGaamyCaaqabaqcaaQaaGPaVlaadsgacaWGwb GcdaWgaaqcbawaaiaaicdaaeqaaaqaaiaadkfaaeqajmaycqGHRiI8 aaaa@7B20@

 Here, the first integral on the right hand side vanishes for a hydrostatic stress.

 

2. Substituting the linear elastic constitutive equation and the finite element interpolation functions into the virtual work principle, we find that the element stiffness matrix can be reduced to

k aibk (l) = V e (l) C ijkl N a (x) x j N b (x) x l 1 3 C ppkl N a (x) x i N b (x) x l dV + V e (l) 1 3 C ppkl N a (x) x i N b (x) x l dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaDaaaleaacaWGHbGaamyAai aadkgacaWGRbaabaGaaiikaiaadYgacaGGPaaaaOGaeyypa0Zaa8qu aeaadaqadaqaaiaadoeadaWgaaWcbaGaamyAaiaadQgacaWGRbGaam iBaaqabaGcdaWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaadgga aaGccaGGOaGaaCiEaiaacMcaaeaacqGHciITcaWG4bWaaSbaaSqaai aadQgaaeqaaaaakmaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGa amOyaaaakiaacIcacaWH4bGaaiykaaqaaiabgkGi2kaadIhadaWgaa WcbaGaamiBaaqabaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaG4m aaaacaWGdbWaaSbaaSqaaiaadchacaWGWbGaam4AaiaadYgaaeqaaO WaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaWGHbaaaOGaaiik aiaahIhacaGGPaaabaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabe aaaaGcdaWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaadkgaaaGc caGGOaGaaCiEaiaacMcaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadY gaaeqaaaaaaOGaayjkaiaawMcaaiaadsgacaWGwbaaleaacaWGwbWa a0baaWqaaiaadwgaaeaacaGGOaGaamiBaiaacMcaaaaaleqaniabgU IiYdGccaaMc8UaaGPaVlabgUcaRmaapefabaWaaSaaaeaacaaIXaaa baGaaG4maaaacaWGdbWaaSbaaSqaaiaadchacaWGWbGaam4AaiaadY gaaeqaaOWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaWGHbaa aOGaaiikaiaahIhacaGGPaaabaGaeyOaIyRaamiEamaaBaaaleaaca WGPbaabeaaaaGcdaWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaa dkgaaaGccaGGOaGaaCiEaiaacMcaaeaacqGHciITcaWG4bWaaSbaaS qaaiaadYgaaeqaaaaakiaadsgacaWGwbaaleaacaWGwbWaa0baaWqa aiaadwgaaeaacaGGOaGaamiBaiaacMcaaaaaleqaniabgUIiYdaaaa@993A@

 

3. When selectively reduced integration is used, the first volume integral is evaluated using the full integration scheme; the second integral is evaluated using reduced integration points.  The matrix form of the formula for the stiffness can be written as

k el = I=1 N i B T D Dev BJ w I + I=1 M i B T D Vol BJ w I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4AamaaBaaaleaacaWGLbGaamiBaa qabaGccqGH9aqpdaaeWbqaaiaahkeadaahaaWcbeqaaiaadsfaaaGc caWHebWaaWbaaSqabeaacaWGebGaamyzaiaadAhaaaGccaWHcbGaam OsaiaadEhadaWgaaWcbaGaamysaaqabaaabaGaamysaiabg2da9iaa igdaaeaacaWGobWaaSbaaWqaaiaadMgaaeqaaaqdcqGHris5aOGaey 4kaSYaaabCaeaacaWHcbWaaWbaaSqabeaacaWGubaaaOGaaCiramaa CaaaleqabaGaamOvaiaad+gacaWGSbaaaOGaaCOqaiaadQeacaWG3b WaaSbaaSqaaiaadMeaaeqaaaqaaiaadMeacqGH9aqpcaaIXaaabaGa amytamaaBaaameaacaWGPbaabeaaa0GaeyyeIuoaaaa@558A@

where N i , M i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOtamaaBaaaleaacaWGPbaabeaaki aacYcacaWGnbWaaSbaaSqaaiaadMgaaeqaaaaa@3573@  denote the numbers of full and reduced integration points, respectively, and the matrices of elastic constants (for an isotropic material in 3D) are

D Dev = E (1+ν) 2/3 1/3 1/3 0 0 0 1/3 2/3 1/3 0 0 0 1/3 1/3 2/3 0 0 0 0 0 0 1/2 0 0 0 0 0 0 1/2 0 0 0 0 0 0 1/2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiramaaCaaaleqabaGaamiraiaadw gacaWG2baaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGaaiikaiaaigda cqGHRaWkcqaH9oGBcaGGPaaaamaadmaabaqbaeqabyGbaaaaaeaaca aIYaGaai4laiaaiodaaeaacqGHsislcaaIXaGaai4laiaaiodaaeaa cqGHsislcaaIXaGaai4laiaaiodaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacqGHsislcaaIXaGaai4laiaaiodaaeaacaaIYaGaai4l aiaaiodaaeaacqGHsislcaaIXaGaai4laiaaiodaaeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacqGHsislcaaIXaGaai4laiaaiodaaeaa cqGHsislcaaIXaGaai4laiaaiodaaeaacaaIYaGaai4laiaaiodaae aacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacaaIXaGaai4laiaaikdaaeaacaaIWaaabaGaaGimaa qaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIXaGa ai4laiaaikdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaaIXaGaai4laiaaikdaaaaacaGL BbGaayzxaaaaaa@6E4B@

D Vol = E 3(12ν) 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiramaaCaaaleqabaGaamOvaiaad+ gacaWGSbaaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGaaG4maiaacIca caaIXaGaeyOeI0IaaGOmaiabe27aUjaacMcaaaWaamWaaeaafaqabe GbgaaaaaqaaiaaigdaaeaacaaIXaaabaGaaGymaaqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaaiaaigdaaeaacaaIXaaabaGaaGymaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaigdaaeaacaaIXaaabaGa aGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaI WaaabaGaaGimaaaaaiaawUfacaGLDbaaaaa@5910@

 

Selective reduced integration has been implemented in the sample Matlab code Fem_selective_reduced_integration.m. The code can be downloaded from

https://github.com/albower/Applied_Mechanics_of_Solids .

 

When this code is run with the input file volumetric_locking_demo.txt it produces the results shown in the figure below.   The analytical and finite element solutions agree, and there are no signs of hourglassing.

 

 


 

 

Reduced integration with hourglass control: Hourglassing in 4 noded quadrilateral and 8 noded brick elements can also be cured by adding an artificial stiffness to the element that acts to constrain the hourglass mode.   The stiffness must be carefully chosen so as to influence only the hourglass mode.  Only the final result will be given here MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  for details see D.P. Flanagan and T. Belytschko, (1981).  To compute the corrective term:

 

1. Define a series of ‘hourglass base vectors’  Γ a(i) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeu4KdC0aaWbaaSqabeaacaWGHbGaai ikaiaadMgacaGGPaaaaaaa@35A2@  which specify the displacements of the ath node in the ith hourglass mode.   The 4 noded quadrilateral element has only one hourglass mode; the 8 noded brick has 4 modes, listed in the table.

 

2. Calculate the `hourglass shape vectors’ for each mode as follows

γ a(i) = Γ a(i) N a (ξ=0) x j b=1 n e Γ b(i) x j b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4SdC2aaWbaaSqabeaacaWGHbGaai ikaiaadMgacaGGPaaaaOGaeyypa0Jaeu4KdC0aaWbaaSqabeaacaWG HbGaaiikaiaadMgacaGGPaaaaOGaeyOeI0YaaSaaaeaacqGHciITca WGobWaaWbaaSqabeaacaWGHbaaaOGaaiikaiaah67acqGH9aqpcaaI WaGaaiykaaqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaO WaaabCaeaacqqHtoWrdaahaaWcbeqaaiaadkgacaGGOaGaamyAaiaa cMcaaaGccaWG4bWaa0baaSqaaiaadQgaaeaacaWGIbaaaaqaaiaadk gacqGH9aqpcaaIXaaabaGaamOBamaaBaaameaacaWGLbaabeaaa0Ga eyyeIuoaaaa@56B1@

where n e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGLbaabeaaaa a@32E9@  denotes the number of nodes on the element.

 

3. The modified stiffness matrix for the element is written as

k aibk (l) = V e (l) C ijkl N a (x) x j N b (x) x l dV +κ V e (l) m γ a(m) γ b(m) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaDaaaleaacaWGHbGaamyAai aadkgacaWGRbaabaGaaiikaiaadYgacaGGPaaaaOGaeyypa0Zaa8qu aeaacaWGdbWaaSbaaSqaaiaadMgacaWGQbGaam4AaiaadYgaaeqaaO WaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaWGHbaaaOGaaiik aiaahIhacaGGPaaabaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabe aaaaGcdaWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaadkgaaaGc caGGOaGaaCiEaiaacMcaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadY gaaeqaaaaakiaadsgacaWGwbaaleaacaWGwbWaa0baaWqaaiaadwga aeaacaGGOaGaamiBaiaacMcaaaaaleqaniabgUIiYdGccaaMc8UaaG PaVlabgUcaRiabeQ7aRjaadAfadaqhaaWcbaGaamyzaaqaaiaacIca caWGSbGaaiykaaaakmaaqafabaGaeq4SdC2aaWbaaSqabeaacaWGHb Gaaiikaiaad2gacaGGPaaaaOGaeq4SdC2aaWbaaSqabeaacaWGIbGa aiikaiaad2gacaGGPaaaaaqaaiaad2gaaeqaniabggHiLdaaaa@6FBF@

where V e MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaWGLbaabeaaaa a@32D1@  denotes the volume of the element, and κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdSgaaa@3292@  is a numerical parameter that controls the stiffness of the hourglass resistance.  Taking κ=0.01μ N a / x j N a / x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdSMaeyypa0JaaGimaiaac6caca aIWaGaaGymaiabeY7aTnaabmaabaGaeyOaIyRaamOtamaaCaaaleqa baGaamyyaaaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaae qaaaGccaGLOaGaayzkaaWaaeWaaeaacqGHciITcaWGobWaaWbaaSqa beaacaWGHbaaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaamOAaa qabaaakiaawIcacaGLPaaaaaa@4A63@  where μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  is the elastic shear modulus works well for most applications.  If κ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqOUdSgaaa@3292@  is too large, it will seriously over-stiffen the solid.

 

 

Sample code: Reduced integration with hourglass control has been implemented in the sample Matlab code Fem_hourglasscontrol.m.   When run with the input file volumetric_locking_demo.txt it produces the results shown in the figure below. Hourglassing has clearly been satisfactorily eliminated.

 

 


 

 

HEALTH WARNING: Hourglass control is not completely effective: it can fail for finite strain problems and can also cause problems in a dynamic analysis, where the low stiffness of the hourglass modes can introduce spurious low frequency vibration modes and low wave speeds.

 

 

 

8.6.3 Volumetric locking and ‘B-bar’ elements

 

The ‘B-bar’ method for small strains:  Like selective reduced integration, the B-bar method works by treating the volumetric and deviatoric parts of the stiffness matrix separately.  Instead of separating the volume integral into two parts, however, the B-bar method modifies the definition of the strain in the element.  Its main advantage is that the concept can easily be generalized to finite strain problems.   Here, we will illustrate the method by applying it to small-strain linear elasticity.  The procedure starts with the usual virtual work principle 

R σ ij [ ε ij ( u k )]δ ε ij dV R b i δ v i dV 2 R t i * δ v i dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaai4waiabew7aLnaaBaaaleaacaWGPbGaamOA aaqabaGccaGGOaGaamyDamaaBaaaleaacaWGRbaabeaakiaacMcaca GGDbGaeqiTdqMaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiaa dsgacaWGwbGaeyOeI0Yaa8quaeaacaWGIbWaaSbaaSqaaiaadMgaae qaaOGaeqiTdqMaamODamaaBaaaleaacaWGPbaabeaakiaadsgacaWG wbGaeyOeI0Yaa8quaeaacaWG0bWaa0baaSqaaiaadMgaaeaacaGGQa aaaOGaeqiTdqMaamODamaaBaaaleaacaWGPbaabeaakiaadsgacaWG bbGaeyypa0JaaGimaaWcbaGaeyOaIy7aaSbaaWqaaiaaikdaaeqaaS GaamOuaaqab0Gaey4kIipaaSqaaiaadkfaaeqaniabgUIiYdaaleaa caWGsbaabeqdcqGHRiI8aaaa@63F5@

In the B-bar method

1. We introduce a new variable to characterize the volumetric strain in the elements.  Define

ω= 1 3 V e V e ε kk dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdCNaeyypa0ZaaSaaaeaacaaIXa aabaGaaG4maiaadAfadaWgaaWcbaGaamyzaaqabaaaaOWaa8quaeaa cqaH1oqzdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaamizaiaadAfaaS qaaiaadAfadaWgaaadbaGaamyzaaqabaaaleqaniabgUIiYdaaaa@40FD@

where the integral is taken over the volume of the element.

 

2. The strain in each element is replaced by the approximation ε ¯ ij = ε ij +(ω ε kk /3) δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaebadaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaa beaakiabgUcaRiaacIcacqaHjpWDcqGHsislcqaH1oqzdaWgaaWcba Gaam4AaiaadUgaaeqaaOGaai4laiaaiodacaGGPaGaeqiTdq2aaSba aSqaaiaadMgacaWGQbaabeaaaaa@4742@

 

3. Similarly, the virtual strain in each element is replaced by δ ε ¯ ij =δ ε ij +(δωδ ε kk /3) δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqyTduMbaebadaWgaaWcba GaamyAaiaadQgaaeqaaOGaeyypa0JaeqiTdqMaeqyTdu2aaSbaaSqa aiaadMgacaWGQbaabeaakiabgUcaRiaacIcacqaH0oazcqaHjpWDcq GHsislcqaH0oazcqaH1oqzdaWgaaWcbaGaam4AaiaadUgaaeqaaOGa ai4laiaaiodacaGGPaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabe aaaaa@4DD6@

 

This means that the volumetric strain in the element is everywhere equal to its mean value.  The virtual work principle is then written in terms of ε ¯ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafqyTduMbaebadaWgaaWcbaGaamyAai aadQgaaeqaaaaa@34A8@  and δ ε ¯ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMafqyTduMbaebadaWgaaWcba GaamyAaiaadQgaaeqaaaaa@364D@  as

R σ ij [ ε ¯ ij ( u k )]δ ε ¯ ij dV R b i δ v i dV 2 R t i * δ v i dA=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaai4waiqbew7aLzaaraWaaSbaaSqaaiaadMga caWGQbaabeaakiaacIcacaWG1bWaaSbaaSqaaiaadUgaaeqaaOGaai ykaiaac2facqaH0oazcuaH1oqzgaqeamaaBaaaleaacaWGPbGaamOA aaqabaGccaWGKbGaamOvaiabgkHiTmaapefabaGaamOyamaaBaaale aacaWGPbaabeaakiabes7aKjaadAhadaWgaaWcbaGaamyAaaqabaGc caWGKbGaamOvaiabgkHiTmaapefabaGaamiDamaaDaaaleaacaWGPb aabaGaaiOkaaaakiabes7aKjaadAhadaWgaaWcbaGaamyAaaqabaGc caWGKbGaamyqaiabg2da9iaaicdaaSqaaiabgkGi2oaaBaaameaaca aIYaaabeaaliaadkfaaeqaniabgUIiYdaaleaacaWGsbaabeqdcqGH RiI8aaWcbaGaamOuaaqab0Gaey4kIipaaaa@6425@

Finally, introducing the finite element interpolation and using the constitutive equation yields the usual system of linear finite element equations, but with a modified element stiffness matrix (and for nonlinear problems, a modified residual force vector).    The stiffness and element residual are assembled using the steps outlined in Section 8.1.13, but with the following modifications:

 

1. Before calculating the stiffness matrix, the volume average of the shape function derivatives must be computed.   This means an additional loop over the integration points, calculating the spatial shape function derivatives at each successive integration point (as in Step 1 of 8.1.13) and assembling the sums

V el = I=1 N I J w I H= I=1 N I dN dx J w I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOvamaaBaaaleaacaWGLbGaamiBaa qabaGccqGH9aqpdaaeWbqaaiaadQeacaWG3bWaaSbaaSqaaiaadMea aeqaaaqaaiaadMeacqGH9aqpcaaIXaaabaGaamOtamaaBaaameaaca WGjbaabeaaa0GaeyyeIuoakiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caWHibGaeyypa0ZaaabCaeaada WcaaqaaiaadsgacaWHobaabaGaamizaiaahIhaaaGaamOsaiaadEha daWgaaWcbaGaamysaaqabaaabaGaamysaiabg2da9iaaigdaaeaaca WGobWaaSbaaWqaaiaadMeaaeqaaaqdcqGHris5aaaa@73B2@

A reduced integration scheme is usually sufficient.   Once the sum has been computed the volume average shape function derivatives follow as

dN dx ¯ = H V el MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa0aaaeaadaWcaaqaaiaadsgacaWHob aabaGaamizaiaahIhaaaaaaiabg2da9maalaaabaGaaCisaaqaaiaa dAfadaWgaaWcbaGaamyzaiaadYgaaeqaaaaaaaa@3974@

 

2. The element stiffness matrix and residual force vector are then assembled as before, except that the strain vector and B matrix are modified to

ε ¯ =BU MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyTdyaaraGaeyypa0JaaCOqaiaahw faaaa@34E8@

with

ε ¯ = ε ¯ 11 ε ¯ 22 2 ε ¯ 12 T (2D) ε ¯ 11 ε ¯ 22 ε ¯ 33 2 ε ¯ 12 2 ε ¯ 13 2 ε ¯ 23 T (3D) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyTdyaaraGaeyypa0Zaaiqaaeaafa qabeGabaaabaWaamWaaeaafaqabeqadaaabaGafqyTduMbaebadaWg aaWcbaGaaGymaiaaigdaaeqaaaGcbaGafqyTduMbaebadaWgaaWcba GaaGOmaiaaikdaaeqaaaGcbaGaaGOmaiqbew7aLzaaraWaaSbaaSqa aiaaigdacaaIYaaabeaaaaaakiaawUfacaGLDbaadaahaaWcbeqaai aadsfaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caGGOaGaaGOmai aabseacaqGPaaabaWaamWaaeaafaqabeqagaaaaeaacuaH1oqzgaqe amaaBaaaleaacaaIXaGaaGymaaqabaaakeaacuaH1oqzgaqeamaaBa aaleaacaaIYaGaaGOmaaqabaaakeaacuaH1oqzgaqeamaaBaaaleaa caaIZaGaaG4maaqabaaakeaacaaIYaGafqyTduMbaebadaWgaaWcba GaaGymaiaaikdaaeqaaaGcbaGaaGOmaiqbew7aLzaaraWaaSbaaSqa aiaaigdacaaIZaaabeaaaOqaaiaaikdacuaH1oqzgaqeamaaBaaale aacaaIYaGaaG4maaqabaaaaaGccaGLBbGaayzxaaWaaWbaaSqabeaa caWGubaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaacIcacaaIZaGaaeiraiaabMcaaaaa caGL7baaaaa@B6E4@

B ¯ = B DEV + B VOL MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOqayaaraGaeyypa0JaaCOqamaaCa aaleqabaGaamiraiaadweacaWGwbaaaOGaey4kaSIaaCOqamaaCaaa leqabaGaamOvaiaad+eacaWGmbaaaaaa@3A93@


 


The stress follows as σ=D ε ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Wdiabg2da9iaahseaceWH1oGbae baaaa@355B@  and the element stiffness and residual force are calculated using the usual expressions

k el = I=1 N i B ¯ T D B ¯ J w I r el = I=1 N i B ¯ T σJ w I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4AamaaBaaaleaacaWGLbGaamiBaa qabaGccqGH9aqpdaaeWbqaaiqahkeagaqeamaaCaaaleqabaGaamiv aaaakiaahseaceWHcbGbaebacaWGkbGaam4DamaaBaaaleaacaWGjb aabeaaaeaacaWGjbGaeyypa0JaaGymaaqaaiaad6eadaWgaaadbaGa amyAaaqabaaaniabggHiLdGccaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaCOCamaaBaaaleaacaWGLbGaamiBaa qabaGccqGH9aqpdaaeWbqaaiqahkeagaqeamaaCaaaleqabaGaamiv aaaakiaaho8acaWGkbGaam4DamaaBaaaleaacaWGjbaabeaaaeaaca WGjbGaeyypa0JaaGymaaqaaiaad6eadaWgaaadbaGaamyAaaqabaaa niabggHiLdGccaaMc8oaaa@6D23@

The sums can be evaluated using a standard, full integration scheme.

 

The B-bar method for small strains has been implemented in the sample code or FEM_Bbar.m.  The code can be run with the input file volumetric_locking_demo.txt.  Run the code yourself to verify that the analytical and finite element solutions agree, and there are no signs of hourglassing.

 

The ‘B-bar’ method for large strains:  The B-bar method can also be extended to finite deformations.   As a representative application, we will use it to solve the problem involving deformation of a hyperelastic material that was discussed in Section 8.4.   Most hyperelastic materials have a large bulk modulus compared to their shear modulus (and are often idealized as incompressible materials).   As we have seen, it is important to design elements carefully for this sort of material.  The simple implementation described Section 8.4 will suffer from volumetric locking. The approach discussed below will resolve this problem.

As in the small strain B-bar method the basic idea is to interpolate the volumetric and deviatoric strains separately.   In finite strain problems we use the deformation gradient as the basic measure of deformation rather than the strain; as you probably know, the Jacobian of the deformation gradient quantifies volume changes.   Accordingly, the B-bar method for finite strains uses a modified measure of the Jacobian of the deformation gradient.  To this end:

 

1. We define the volume averaged Jacobian of the deformation gradient

η= 1 V el V el det(F)dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4TdGMaeyypa0ZaaSaaaeaacaaIXa aabaGaamOvamaaBaaaleaacaWGLbGaamiBaaqabaaaaOWaa8quaeaa ciGGKbGaaiyzaiaacshacaGGOaGaaCOraiaacMcacaWGKbGaamOvaa WcbaGaamOvamaaBaaameaacaWGLbGaamiBaaqabaaaleqaniabgUIi YdGccaaMc8oaaa@44CD@

Here, the integral is taken over the volume of the element in the reference configuration.

 

2. The deformation gradient is replaced by an approximation F ¯ ij = F ij η/J 1/n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOrayaaraWaaSbaaSqaaiaadMgaca WGQbaabeaakiabg2da9iaadAeadaWgaaWcbaGaamyAaiaadQgaaeqa aOWaaeWaaeaacqaH3oaAcaGGVaGaamOsaaGaayjkaiaawMcaamaaCa aaleqabaGaaGymaiaac+cacaWGUbaaaaaa@3EFF@ , where n=2 for a 2D plane strain problem and n=3 for a 3D problem, while J=det(F).

 

3. The virtual work equation is expressed in terms of this modified deformation gradient as

                                             R 0 τ ij [ F ¯ kl ]δ L ¯ ij d V 0 R 0 ρ 0 b i δ v i d V 0 2 R 0 t i * δ v i ηd A 0 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHepaDdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaai4waiqadAeagaqeamaaBaaaleaacaWGRbGa amiBaaqabaGccaGGDbGaeqiTdqMabmitayaaraWaaSbaaSqaaiaadM gacaWGQbaabeaakiaadsgacaWGwbWaaSbaaSqaaiaaicdaaeqaaOGa eyOeI0Yaa8quaeaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGIb WaaSbaaSqaaiaadMgaaeqaaOGaeqiTdqMaamODamaaBaaaleaacaWG PbaabeaakiaadsgacaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0 Yaa8quaeaacaWG0bWaa0baaSqaaiaadMgaaeaacaGGQaaaaOGaeqiT dqMaamODamaaBaaaleaacaWGPbaabeaakiabeE7aOjaadsgacaWGbb WaaSbaaSqaaiaaicdaaeqaaaqaaiabgkGi2oaaBaaameaacaaIYaaa beaaliaadkfadaWgaaadbaGaaGimaaqabaaaleqaniabgUIiYdGccq GH9aqpcaaIWaaaleaacaWGsbWaaSbaaWqaaiaaicdaaeqaaaWcbeqd cqGHRiI8aaWcbaGaamOuamaaBaaameaacaaIWaaabeaaaSqab0Gaey 4kIipaaaa@68F6@  

where τ ij =J σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaadQeacqaHdpWCdaWgaaWcbaGaamyAaiaadQga aeqaaaaa@3A59@  is the Kirchhoff stress,

δ L ¯ ij =δ F ¯ ˙ ik F ¯ kj 1 =δ L ij + δ ij n δ η ˙ η δ L kk MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMabmitayaaraWaaSbaaSqaai aadMgacaWGQbaabeaakiabg2da9iabes7aKjqadAeagaqegaGaamaa BaaaleaacaWGPbGaam4AaaqabaGcceWGgbGbaebadaqhaaWcbaGaam 4AaiaadQgaaeaacqGHsislcaaIXaaaaOGaeyypa0JaeqiTdqMaamit amaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkdaWcaaqaaiabes 7aKnaaBaaaleaacaWGPbGaamOAaaqabaaakeaacaWGUbaaamaabmaa baWaaSaaaeaacqaH0oazcuaH3oaAgaGaaaqaaiabeE7aObaacqGHsi slcqaH0oazcaWGmbWaaSbaaSqaaiaadUgacaWGRbaabeaaaOGaayjk aiaawMcaaaaa@5710@

and

δ η ˙ = 1 V el V el J F ji 1 δ F ˙ ij dV = 1 V el V el Jδ L kk dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVlabes7aKjqbeE7aOzaacaGaey ypa0ZaaSaaaeaacaaIXaaabaGaamOvamaaBaaaleaacaWGLbGaamiB aaqabaaaaOWaa8quaeaacaWGkbGaamOramaaDaaaleaacaWGQbGaam yAaaqaaiabgkHiTiaaigdaaaGccqaH0oazceWGgbGbaiaadaWgaaWc baGaamyAaiaadQgaaeqaaOGaamizaiaadAfaaSqaaiaadAfadaWgaa adbaGaamyzaiaadYgaaeqaaaWcbeqdcqGHRiI8aOGaeyypa0ZaaSaa aeaacaaIXaaabaGaamOvamaaBaaaleaacaWGLbGaamiBaaqabaaaaO Waa8quaeaacaWGkbGaeqiTdqMaamitamaaBaaaleaacaWGRbGaam4A aaqabaGccaWGKbGaamOvaaWcbaGaamOvamaaBaaameaacaWGLbGaam iBaaqabaaaleqaniabgUIiYdaaaa@5C7E@

 

4. We now introduce the usual element interpolation functions and calculate the deformation gradient and velocity gradient as

F ij = δ ij + u i x j = δ ij + a=1 n N a x j u i a δ L ij = δ v i y j = a=1 n N a y j δ v i a N a y j = N a x k F kj 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGgbWaaSbaaSqaaiaadMgaca WGQbaabeaakiabg2da9iabes7aKnaaBaaaleaacaWGPbGaamOAaaqa baGccqGHRaWkdaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaamyAaa qabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaakiab g2da9iabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkda aeWbqaamaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGaamyyaaaa aOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGaamyDam aaDaaaleaacaWGPbaabaGaamyyaaaaaeaacaWGHbGaeyypa0JaaGym aaqaaiaad6gaa0GaeyyeIuoaaOqaaiabes7aKjaadYeadaWgaaWcba GaamyAaiaadQgaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcqaH0oaz caWG2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamyEamaaBa aaleaacaWGQbaabeaaaaGccqGH9aqpdaaeWbqaamaalaaabaGaeyOa IyRaamOtamaaCaaaleqabaGaamyyaaaaaOqaaiabgkGi2kaadMhada WgaaWcbaGaamOAaaqabaaaaOGaeqiTdqMaamODamaaDaaaleaacaWG PbaabaGaamyyaaaaaeaacaWGHbGaeyypa0JaaGymaaqaaiaad6gaa0 GaeyyeIuoakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaala aabaGaeyOaIyRaamOtamaaCaaaleqabaGaamyyaaaaaOqaaiabgkGi 2kaadMhadaWgaaWcbaGaamOAaaqabaaaaOGaeyypa0ZaaSaaaeaacq GHciITcaWGobWaaWbaaSqabeaacaWGHbaaaaGcbaGaeyOaIyRaamiE amaaBaaaleaacaWGRbaabeaaaaGccaWGgbWaa0baaSqaaiaadUgaca WGQbaabaGaeyOeI0IaaGymaaaaaaaa@B855@

 

5. As in the small-strain B-bar method we introduce the volume averaged shape function derivatives

N a y i ¯ = 1 η V el V el J N a y i dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa0aaaeaacaaMc8+aaSaaaeaacqGHci ITcaWGobWaaWbaaSqabeaacaWGHbaaaaGcbaGaeyOaIyRaamyEamaa BaaaleaacaWGPbaabeaaaaaaaOGaeyypa0ZaaSaaaeaacaaIXaaaba Gaeq4TdGMaamOvamaaBaaaleaacaWGLbGaamiBaaqabaaaaOWaa8qu aeaacaWGkbWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaWGHb aaaaGcbaGaeyOaIyRaamyEamaaBaaaleaacaWGPbaabeaaaaGccaWG KbGaamOvaaWcbaGaamOvamaaBaaameaacaWGLbGaamiBaaqabaaale qaniabgUIiYdaaaa@4E8C@

 

6. With these identities the discrete equilibrium equation can be expressed as

R i a F i a =0 F i a = R 0 ρ 0 b i N a d V 0 + 2 R 0 t i * N a η ^ d A 0 R i a = R 0 τ mj [ F ¯ kl ] δ im N a y j + δ mj n N a y i ¯ N a y i d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGsbWaa0baaSqaaiaadMgaae aacaWGHbaaaOGaeyOeI0IaamOramaaDaaaleaacaWGPbaabaGaamyy aaaakiabg2da9iaaicdaaeaacaWGgbWaa0baaSqaaiaadMgaaeaaca WGHbaaaOGaeyypa0Zaa8quaeaacqaHbpGCdaWgaaWcbaGaaGimaaqa baGccaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamOtamaaCaaaleqaba GaamyyaaaakiaadsgacaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaey4k aSYaa8quaeaacaWG0bWaa0baaSqaaiaadMgaaeaacaGGQaaaaOGaam OtamaaCaaaleqabaGaamyyaaaakiqbeE7aOzaajaGaamizaiaadgea daWgaaWcbaGaaGimaaqabaaabaGaeyOaIy7aaSbaaWqaaiaaikdaae qaaSGaamOuamaaBaaameaacaaIWaaabeaaaSqab0Gaey4kIipaaSqa aiaadkfadaWgaaadbaGaaGimaaqabaaaleqaniabgUIiYdaakeaaca WGsbWaa0baaSqaaiaadMgaaeaacaWGHbaaaOGaeyypa0Zaa8quaeaa cqaHepaDdaWgaaWcbaGaamyBaiaadQgaaeqaaOGaai4waiqadAeaga qeamaaBaaaleaacaWGRbGaamiBaaqabaGccaGGDbWaamWaaeaacqaH 0oazdaWgaaWcbaGaamyAaiaad2gaaeqaaOWaaSaaaeaacqGHciITca WGobWaaWbaaSqabeaacaWGHbaaaaGcbaGaeyOaIyRaamyEamaaBaaa leaacaWGQbaabeaaaaGccqGHRaWkdaWcaaqaaiabes7aKnaaBaaale aacaWGTbGaamOAaaqabaaakeaacaWGUbaaamaabmaabaWaa0aaaeaa daWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaadggaaaaakeaacq GHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaaaaGccqGHsisldaWc aaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaadggaaaaakeaacqGHci ITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaGa ay5waiaaw2faaiaadsgacaWGwbWaaSbaaSqaaiaaicdaaeqaaaqaai aadkfadaWgaaadbaGaaGimaaqabaaaleqaniabgUIiYdaaaaa@90C6@

 

7. The equilibrium equation is nonlinear, and must be solved using Newton-Raphson iteration. This means repeatedly solving

K aibk d w k b = R i a + F i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaDaaaleaacaWGHbGaamyAai aadkgacaWGRbaabaaaaOGaamizaiaadEhadaqhaaWcbaGaam4Aaaqa aiaadkgaaaGccqGH9aqpcqGHsislcaWGsbWaa0baaSqaaiaadMgaae aacaWGHbaaaOGaey4kaSIaamOramaaDaaaleaacaWGPbaabaGaamyy aaaaaaa@4208@

 

for the correction d w k b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadEhadaqhaaWcbaGaam4Aaa qaaiaadkgaaaaaaa@34C9@  to the current approximation to the displacement field.  The stiffness follows from linearizing the virtual work equation.  The resulting element stiffness is

k aibk el = R 0 δ im N a y j + δ mj n N a y i ¯ N a y i τ mj [ B kl ] B ln B ln F ¯ ps F ¯ rs N b y r δ pk + δ pr n N b y k ¯ N b y k d V 0 + R 0 τ ij [ B kl ] N a y k N b y j + τ jj [ F ¯ kl ] 1 n Q aibk + N a y k N b y i N a y i ¯ N b y k ¯ d V 0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGRbWaa0baaSqaaiaadggaca WGPbGaamOyaiaadUgaaeaacaWGLbGaamiBaaaakiabg2da9maapefa baWaaeWaaeaacqaH0oazdaWgaaWcbaGaamyAaiaad2gaaeqaaOWaaS aaaeaacqGHciITcaWGobWaaWbaaSqabeaacaWGHbaaaaGcbaGaeyOa IyRaamyEamaaBaaaleaacaWGQbaabeaaaaGccqGHRaWkdaWcaaqaai abes7aKnaaBaaaleaacaWGTbGaamOAaaqabaaakeaacaWGUbaaamaa bmaabaWaa0aaaeaadaWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaai aadggaaaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaa aaGccqGHsisldaWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaadg gaaaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaaaOGa ayjkaiaawMcaaaGaayjkaiaawMcaamaalaaabaGaeyOaIyRaeqiXdq 3aaSbaaSqaaiaad2gacaWGQbaabeaakiaacUfacaWGcbWaaSbaaSqa aiaadUgacaWGSbaabeaakiaac2faaeaacqGHciITcaWGcbWaaSbaaS qaaiaadYgacaWGUbaabeaaaaGcdaWcaaqaaiabgkGi2kaadkeadaWg aaWcbaGaamiBaiaad6gaaeqaaaGcbaGaeyOaIyRabmOrayaaraWaaS baaSqaaiaadchacaWGZbaabeaaaaGcceWGgbGbaebadaWgaaWcbaGa amOCaiaadohaaeqaaOWaaeWaaeaadaWcaaqaaiabgkGi2kaad6eada ahaaWcbeqaaiaadkgaaaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaa dkhaaeqaaaaakiabes7aKnaaBaaaleaacaWGWbGaam4AaaqabaGccq GHRaWkdaWcaaqaaiabes7aKnaaBaaaleaacaWGWbGaamOCaaqabaaa keaacaWGUbaaamaabmaabaWaa0aaaeaadaWcaaqaaiabgkGi2kaad6 eadaahaaWcbeqaaiaadkgaaaaakeaacqGHciITcaWG5bWaaSbaaSqa aiaadUgaaeqaaaaaaaGccqGHsisldaWcaaqaaiabgkGi2kaad6eada ahaaWcbeqaaiaadkgaaaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaa dUgaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaadsgaca WGwbWaaSbaaSqaaiaaicdaaeqaaaqaaiaadkfadaWgaaadbaGaaGim aaqabaaaleqaniabgUIiYdaakeaacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlabgUcaRmaapefabaGaeyOeI0IaeqiXdq3aaSbaaS qaaiaadMgacaWGQbaabeaakiaacUfacaWGcbWaaSbaaSqaaiaadUga caWGSbaabeaakiaac2fadaWcaaqaaiabgkGi2kaad6eadaahaaWcbe qaaiaadggaaaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadUgaaeqa aaaakmaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGaamOyaaaaaO qaaiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSIa eqiXdq3aaSbaaSqaaiaadQgacaWGQbaabeaakiaacUfaceWGgbGbae badaWgaaWcbaGaam4AaiaadYgaaeqaaOGaaiyxamaalaaabaGaaGym aaqaaiaad6gaaaWaaeWaaeaacaWGrbWaaSbaaSqaaiaadggacaWGPb GaamOyaiaadUgaaeqaaOGaey4kaSYaaSaaaeaacqGHciITcaWGobWa aWbaaSqabeaacaWGHbaaaaGcbaGaeyOaIyRaamyEamaaBaaaleaaca WGRbaabeaaaaGcdaWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaa dkgaaaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaaki abgkHiTmaanaaabaWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaa caWGHbaaaaGcbaGaeyOaIyRaamyEamaaBaaaleaacaWGPbaabeaaaa aaaOWaa0aaaeaadaWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaa dkgaaaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadUgaaeqaaaaaaa aakiaawIcacaGLPaaacaWGKbGaamOvamaaBaaaleaacaaIWaaabeaa aeaacaWGsbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRiI8aaaaaa@0177@

where

Q aibk = 1 η V el V el J N b y k N a y i J N a y k N b y i dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuamaaBaaaleaacaWGHbGaamyAai aadkgacaWGRbaabeaakiabg2da9maalaaabaGaaGymaaqaaiabeE7a OjaadAfadaWgaaWcbaGaamyzaiaadYgaaeqaaaaakmaapefabaWaae WaaeaacaWGkbWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaWG IbaaaaGcbaGaeyOaIyRaamyEamaaBaaaleaacaWGRbaabeaaaaGcda WcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaadggaaaaakeaacqGH ciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaakiabgkHiTiaadQeada WcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaadggaaaaakeaacqGH ciITcaWG5bWaaSbaaSqaaiaadUgaaeqaaaaakmaalaaabaGaeyOaIy RaamOtamaaCaaaleqabaGaamOyaaaaaOqaaiabgkGi2kaadMhadaWg aaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGaamizaiaadAfaaS qaaiaadAfadaWgaaadbaGaamyzaiaadYgaaeqaaaWcbeqdcqGHRiI8 aaaa@62CD@

 

8. The element residual force and stiffness can be re-written as matrix operations as follows:

r el = I=1 N i A ¯ T τ J ^ w I k el = I=1 N i A ¯ T DG A ¯ * PS+ τ jj n Q+P P T ν ¯ ν ¯ J ^ w I Q= 1 η V el I=1 N i J ννP P T J ^ w I MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWHYbWaaSbaaSqaaiaadwgaca WGSbaabeaakiabg2da9maaqahabaGabCyqayaaraWaaWbaaSqabeaa caWGubaaaOGaaCiXdiqadQeagaqcaiaadEhadaWgaaWcbaGaamysaa qabaaabaGaamysaiabg2da9iaaigdaaeaacaWGobWaaSbaaWqaaiaa dMgaaeqaaaqdcqGHris5aaGcbaGaaC4AamaaBaaaleaacaWGLbGaam iBaaqabaGccqGH9aqpdaaeWbqaamaabmaabaGabCyqayaaraWaaWba aSqabeaacaWGubaaaOGaaCiraiaahEeaceWHbbGbaebadaahaaWcbe qaaiaacQcaaaGccqGHsislcaWHqbGaeSyMIuMaaC4uaiabgUcaRmaa laaabaGaeqiXdq3aaSbaaSqaaiaadQgacaWGQbaabeaaaOqaaiaad6 gaaaWaaiWaaeaacaWHrbGaey4kaSIaaCiuaiablMPiLjaahcfadaah aaWcbeqaaiaadsfaaaGccqGHsislceWH9oGbaebacqGHxkcXceWH9o GbaebaaiaawUhacaGL9baaaiaawIcacaGLPaaaceWGkbGbaKaacaWG 3bWaaSbaaSqaaiaadMeaaeqaaaqaaiaadMeacqGH9aqpcaaIXaaaba GaamOtamaaBaaameaacaWGPbaabeaaa0GaeyyeIuoaaOqaaiaahgfa cqGH9aqpdaWcaaqaaiaaigdaaeaacqaH3oaAcaWGwbWaaSbaaSqaai aadwgacaWGSbaabeaaaaGcdaaeWbqaaiaadQeadaqadaqaaiaah27a cqGHxkcXcaWH9oGaeyOeI0IaaCiuaiablMPiLjaahcfadaahaaWcbe qaaiaadsfaaaaakiaawIcacaGLPaaaceWGkbGbaKaacaWG3bWaaSba aSqaaiaadMeaaeqaaaqaaiaadMeacqGH9aqpcaaIXaaabaGaamOtam aaBaaameaacaWGPbaabeaaa0GaeyyeIuoaaaaa@8B94@

where (for a 3D problem)


 


where A, A * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyqaiaacYcacaWHbbWaaWbaaSqabe aacaGGQaaaaaaa@33FF@  as well as P,S MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCiuaiaacYcacaWHtbaaaa@3345@  are the matrices of shape function derivatives defined in Section 8.4.6, except that for finite strain problems dN/dx MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaah6eacaGGVaGaamizaiaahI haaaa@353D@  in 8.4.6 must be replaced by dN/dy=(dN/dx) F 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaah6eacaGGVaGaamizaiaahM hacqGH9aqpcaGGOaGaamizaiaah6eacaGGVaGaamizaiaahIhacaGG PaGaaCOramaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@3E9E@ . Similarly, matrices D and G are defined in 8.4.6, but must be calculated using the modified deformation gradient F ¯ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCOrayaaraaaaa@31C7@ .   Finally

ν= N 1 y 1 N 1 y 2 N 1 y 3 N 2 y 1 N 2 y 2 N 2 y 3 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyVdiabg2da9maadmaabaqbaeqabe WbaaaabaWaaSaaaeaacqGHciITcaWGobWaaWbaaSqabeaacaaIXaaa aaGcbaGaeyOaIyRaamyEamaaBaaaleaacaaIXaaabeaaaaaakeaada WcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaaigdaaaaakeaacqGH ciITcaWG5bWaaSbaaSqaaiaaikdaaeqaaaaaaOqaamaalaaabaGaey OaIyRaamOtamaaCaaaleqabaGaaGymaaaaaOqaaiabgkGi2kaadMha daWgaaWcbaGaaG4maaqabaaaaaGcbaWaaSaaaeaacqGHciITcaWGob WaaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamyEamaaBaaaleaa caaIXaaabeaaaaaakeaadaWcaaqaaiabgkGi2kaad6eadaahaaWcbe qaaiaaikdaaaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaaikdaaeqa aaaaaOqaamaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGaaGOmaa aaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaaG4maaqabaaaaaGcbaGa eS47IWeaaaGaay5waiaaw2faaaaa@5E8E@

is a vector of shape function derivatives, and ν ¯ MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabCyVdyaaraaaaa@3240@  is the same quantity with N/y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamOtaiaac+cacqGHciITca WG5baaaa@3630@  replaced by N ¯ /y MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa0aaaeaacqGHciITcaWGobaaaiaac+ cacqGHciITcaWG5baaaa@3641@ .  The integrals may be evaluated with a full integration scheme.

 

Sample Code: The B-bar method for finite strains has been implemented in the sample code or FEM_bbar_hyperelastic.m.  The code can be run with the input file bbar_hypere_demo.txt.  The file calculates the deformation of a long hollow cylinder with internal radius a and external radius b=4a as shown in the figure below.  The solid is made from a modified neo-hookean material described in Section 3.5 (see also Section 8.4), with shear modulus μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  modulus  and bulk modulus K MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4saaaa@31B0@ .  The cylinder is loaded by an internal pressure p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaaaa@31D5@   and deforms in plane strain.  The predicted deformation of the cylinder is shown in the figure below.  Results on the right were obtained with the B-bar elements described in this section; while those on the left were obtained with the standard fully integrated isoparametric elements described in Section 8.4.   The figure confirms that the B-bar element successfully cures locking in the standard formulation.

 

 


 

 

 

8.6.4 Hybrid elements for modeling near-incompressible materials

 

The bulk elastic modulus is infinite for a fully incompressible material, which leads to an infinite stiffness matrix in the standard finite element formulation (even if reduced integration is used to avoid locking).   This behavior can cause the stiffness matrix for a nearly incompressible material to become ill-conditioned, so that small rounding errors during the computation result in large errors in the solution.

 

Hybrid elements are designed to avoid this problem.  They work by including the hydrostatic stress distribution as an additional unknown variable, which must be computed at the same time as the displacement field.  This allows the stiff terms to be removed from the system of finite element equations.  The procedure is illustrated most easily using isotropic linear elasticity, but in practice hybrid elements are usually used to simulate rubbers or metals subjected to large plastic strains.

 

Hybrid elements are based on a modified version of the principle of virtual work, as follows. The virtual work equation (for small strains) is re-written as

R S ij δ ε ij d V 0 + R pδ ε qq d V 0 + R δp σ kk 3K p K d V 0 R b i δ v i d V 0 2 R t i δ v i dA =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaGgaakmaabmaabaGaam4uam aaBaaaleaacaWGPbGaamOAaaqabaGccqaH0oazcqaH1oqzdaWgaaWc baGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaqcaaQaaGPaVlaads gacaWGwbGcdaWgaaqcbawaaiaaicdaaeqaaaqaaiaadkfaaeqajmay cqGHRiI8aOGaey4kaSYaa8quaKaaGgaacaWGWbGaeqiTdqMaeqyTdu McdaWgaaqcbaAaaiaadghacaWGXbaabeaajaaOcaaMc8Uaamizaiaa dAfakmaaBaaajeaybaGaaGimaaqabaaabaGaamOuaaqabKWaGjabgU IiYdGccqGHRaWkdaWdrbqcaaAaaiabes7aKjaadchakmaabmaabaWa aSaaaeaacqaHdpWCdaWgaaWcbaGaam4AaiaadUgaaeqaaaGcbaGaaG 4maiaadUeaaaGaeyOeI0YaaSaaaeaacaWGWbaabaGaam4saaaaaiaa wIcacaGLPaaajaaOcaaMc8UaamizaiaadAfakmaaBaaajeaybaGaaG imaaqabaaabaGaamOuaaqabKWaGjabgUIiYdGccqGHsisldaWdrbqa aiaadkgadaWgaaWcbaGaamyAaaqabaGccqaH0oazcaWG2bWaaSbaaS qaaiaadMgaaeqaaOGaamizaiaadAfadaWgaaWcbaGaaGimaaqabaGc cqGHsisldaWdrbqaaiaadshadaWgaaWcbaGaamyAaaqabaGccqaH0o azcaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadgeaaSqaaiab gkGi2oaaBaaameaacaaIYaaabeaaliaadkfaaeqaniabgUIiYdaale aacaWGsbaabeqdcqGHRiI8aOGaeyypa0JaaGimaaaa@8887@

Here

 

1. S ij = σ ij σ kk δ ij /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyOeI0Iaeq4Wdm3aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKn aaBaaaleaacaWGPbGaamOAaaqabaGccaGGVaGaaG4maaaa@4295@  is the deviatoric stress, determined from the displacement field;

 

2. σ kk /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadUgacaWGRb aabeaakiaac+cacaaIZaaaaa@3629@  is the hydrostatic stress, again determined from the displacement field;

 

 

3. p is an additional degree of freedom that represents the (unknown) hydrostatic stress in the solid;

 

4. δp MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamiCaaaa@337A@  is an arbitrary variation in the hydrostatic stress;

 

5. K=(1/3) σ kk / ε pp MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4saiabg2da9iaacIcacaaIXaGaai 4laiaaiodacaGGPaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadUgacaWG Rbaabeaakiaac+cacqGHciITcqaH1oqzdaWgaaWcbaGaamiCaiaadc haaeqaaaaa@414F@  is the bulk modulus of the solid.

 

The modified virtual work principle states that, if the virtual work equation is satisfied for all kinematically admissible variations in displacement δ v i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaaaaa@349A@  and strain δ ε ij = δ v i / x j +δ v j / x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaeqyTdu2aaSbaaSqaaiaadM gacaWGQbaabeaakiabg2da9maabmaabaGaeyOaIyRaeqiTdqMaamOD amaaBaaaleaacaWGPbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaS qaaiaadQgaaeqaaOGaey4kaSIaeyOaIyRaeqiTdqMaamODamaaBaaa leaacaWGQbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadM gaaeqaaaGccaGLOaGaayzkaaaaaa@4C7A@  and all possible variations in pressure δp MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamiCaaaa@337A@ , the stress field will satisfy the equilibrium equations and traction boundary conditions, and the pressure variable p will be equal to the hydrostatic stress in the solid.

  

The finite element equations are derived in the usual way

1. The displacement field, virtual displacement field and position in the each element are interpolated using the standard interpolation functions defined in Sections 8.1.9 and 8.1.10  as

u i = a=1 N e N a ( ξ j ) u i a δ v i = a=1 N e N a ( ξ j )δ v i a x i = a=1 N e N a ( ξ j ) x i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki abg2da9maaqahabaGaamOtamaaCaaaleqabaGaamyyaaaakiaacIca cqaH+oaEdaWgaaWcbaGaamOAaaqabaGccaGGPaGaamyDamaaDaaale aacaWGPbaabaGaamyyaaaaaeaacaWGHbGaeyypa0JaaGymaaqaaiaa d6eadaWgaaadbaGaamyzaaqabaaaniabggHiLdGccaaMc8UaaGPaVl aaykW7caaMc8UaeqiTdqMaamODamaaBaaaleaacaWGPbaabeaakiab g2da9maaqahabaGaamOtamaaCaaaleqabaGaamyyaaaakiaacIcacq aH+oaEdaWgaaWcbaGaamOAaaqabaGccaGGPaGaeqiTdqMaamODamaa DaaaleaacaWGPbaabaGaamyyaaaaaeaacaWGHbGaeyypa0JaaGymaa qaaiaad6eadaWgaaadbaGaamyzaaqabaaaniabggHiLdGccaaMc8Ua aGPaVlaaykW7caWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0Zaaa bCaeaacaWGobWaaWbaaSqabeaacaWGHbaaaOGaaiikaiabe67a4naa BaaaleaacaWGQbaabeaakiaacMcacaWG4bWaa0baaSqaaiaadMgaae aacaWGHbaaaaqaaiaadggacqGH9aqpcaaIXaaabaGaamOtamaaBaaa meaacaWGLbaabeaaa0GaeyyeIuoaaaa@785B@

 

2. Since the pressure is now an independent variable, it must also be interpolated.  We write

p(x)= a=1 N p M a ( ξ j ) p a δp(x)= a=1 N p M a ( ξ j )δ p a x i = a=1 N e N a ( ξ j ) x i a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiaacIcacaWH4bGaaiykaiabg2 da9maaqahabaGaamytamaaCaaaleqabaGaamyyaaaakiaacIcacqaH +oaEdaWgaaWcbaGaamOAaaqabaGccaGGPaGaamiCamaaCaaaleqaba GaamyyaaaaaeaacaWGHbGaeyypa0JaaGymaaqaaiaad6eadaWgaaad baGaamiCaaqabaaaniabggHiLdGccaaMc8UaaGPaVlaaykW7caaMc8 UaeqiTdqMaamiCaiaacIcacaWH4bGaaiykaiabg2da9maaqahabaGa amytamaaCaaaleqabaGaamyyaaaakiaacIcacqaH+oaEdaWgaaWcba GaamOAaaqabaGccaGGPaGaeqiTdqMaamiCamaaCaaaleqabaGaamyy aaaaaeaacaWGHbGaeyypa0JaaGymaaqaaiaad6eadaWgaaadbaGaam iCaaqabaaaniabggHiLdGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaabCae aacaWGobWaaWbaaSqabeaacaWGHbaaaOGaaiikaiabe67a4naaBaaa leaacaWGQbaabeaakiaacMcacaWG4bWaa0baaSqaaiaadMgaaeaaca WGHbaaaaqaaiaadggacqGH9aqpcaaIXaaabaGaamOtamaaBaaameaa caWGLbaabeaaa0GaeyyeIuoaaaa@7D8A@

where p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaCaaaleqabaGaamyyaaaaaa a@32E8@  are a discrete set of pressure variables, δ p a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamiCamaaCaaaleqabaGaam yyaaaaaaa@348D@  is an arbitrary change in these pressure variables, M a MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamytamaaCaaaleqabaGaamyyaaaaaa a@32C5@  are a set of interpolation functions for the pressure, and N p MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOtamaaBaaaleaacaWGWbaabeaaaa a@32D4@  is the number of pressure variables associated with the element.  The pressure need not be continuous across neighboring elements, so that independent pressure variables can be added to each element.  The following schemes are usually used

 

a. In linear elements (the 3 noded triangle, 4 noded quadrilateral, 5 noded tetrahedron or 8 noded brick) the pressure is constant.  The pressure is defined by its value at the centroid of each element, and the interpolation functions are constant.

 

b. In quadratic elements (6 noded triangle, 8 noded quadrilateral, 10 noded tetrahedron or 20 noded brick) the pressure varies linearly in the element.  Its value can be defined by the pressure at the corners of each element, and interpolated using the standard linear interpolation functions.

 

 

3. For an isotropic, linear elastic solid with shear modulus μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  and Poisson ratio ν MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyVd4gaaa@3298@  the deviatoric stress is related to the displacement field by  S ij =μ( δ il δ jk + δ ik δ jl 2 δ ij δ kl /3) u k / x l MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH8oqBcaGGOaGaeqiTdq2aaSbaaSqaaiaadMga caWGSbaabeaakiabes7aKnaaBaaaleaacaWGQbGaam4AaaqabaGccq GHRaWkcqaH0oazdaWgaaWcbaGaamyAaiaadUgaaeqaaOGaeqiTdq2a aSbaaSqaaiaadQgacaWGSbaabeaakiabgkHiTiaaikdacqaH0oazda WgaaWcbaGaamyAaiaadQgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadUga caWGSbaabeaakiaac+cacaaIZaGaaiykamaabmaabaGaeyOaIyRaam yDamaaBaaaleaacaWGRbaabeaakiaac+cacqGHciITcaWG4bWaaSba aSqaaiaadYgaaeqaaaGccaGLOaGaayzkaaaaaa@5B83@ , while the hydrostatic stress is σ kk /3=K( u k / x k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadUgacaWGRb aabeaakiaac+cacaaIZaGaeyypa0Jaam4saiaacIcacqGHciITcaWG 1bWaaSbaaSqaaiaadUgaaeqaaOGaai4laiabgkGi2kaadIhadaWgaa WcbaGaam4AaaqabaGccaGGPaaaaa@411A@ , where K=E/3(12ν) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4saiabg2da9iaadweacaGGVaGaaG 4maiaacIcacaaIXaGaeyOeI0IaaGOmaiabe27aUjaacMcaaaa@3A65@  is the bulk modulus.

 

4. Substituting the linear elastic equations and the finite element interpolation functions into the virtual work principle leads to a system of equations for the unknown displacements u k b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaDaaaleaacaWGRbaabaGaam Oyaaaaaaa@33DE@  and pressures p b MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCamaaCaaaleqabaGaamOyaaaaaa a@32E9@  of the form

K aibk u k b + Q aib p b = F i a {a,i}: x k a not on  1 R Q akb u k b Π ab p b =0 u i a = u i * ( x i a ){a,i}: x k a on  1 R MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGlbWaaSbaaSqaaiaadggaca WGPbGaamOyaiaadUgaaeqaaOGaamyDamaaDaaaleaacaWGRbaabaGa amOyaaaakiabgUcaRiaadgfadaWgaaWcbaGaamyyaiaadMgacaWGIb aabeaakiaadchadaahaaWcbeqaaiaadkgaaaGccqGH9aqpcaWGgbWa a0baaSqaaiaadMgaaeaacaWGHbaaaOGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgc GiIiaacUhacaWGHbGaaiilaiaadMgacaGG9bGaaGPaVlaaykW7caaM c8UaaiOoaiaaykW7caaMc8UaaGPaVlaadIhadaqhaaWcbaGaam4Aaa qaaiaadggaaaGccaaMc8UaaeOBaiaab+gacaqG0bGaaeiiaiaab+ga caqGUbGaaeiiaiabgkGi2oaaBaaaleaacaqGXaaabeaakiaadkfaae aacaWGrbWaaSbaaSqaaiaadggacaWGRbGaamOyaaqabaGccaWG1bWa a0baaSqaaiaadUgaaeaacaWGIbaaaOGaeyOeI0IaeuiOda1aaSbaaS qaaiaadggacaWGIbaabeaakiaadchadaahaaWcbeqaaiaadkgaaaGc cqGH9aqpcaaIWaaabaGaamyDamaaDaaaleaacaWGPbaabaGaamyyaa aakiabg2da9iaadwhadaqhaaWcbaGaamyAaaqaaiaacQcaaaGccaGG OaGaamiEamaaDaaaleaacaWGPbaabaGaamyyaaaakiaacMcacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGzaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7cqGHaiIicaGG7bGaamyyaiaacYcaca WGPbGaaiyFaiaaykW7caaMc8UaaGPaVlaacQdacaaMc8UaaGPaVlaa dIhadaqhaaWcbaGaam4AaaqaaiaadggaaaGccaaMc8UaaGPaVlaab+ gacaqGUbGaaeiiaiabgkGi2oaaBaaaleaacaqGXaaabeaakiaadkfa aaaa@F6EB@

where the global stiffness matrices K,Q,Π MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4saiaacYcacaWHrbGaaiilaiaahc 6aaaa@351A@  are obtained by summing the following element stiffness matrices

k aibk = V e C ijkl N a (x) x j N b (x) x l K N a (x) x i N b (x) x k dV q aib = V N a (x) x i M b (x)dV π ab = V e 1 K M a (x) M b (x)dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGRbWaaSbaaSqaaiaadggaca WGPbGaamOyaiaadUgaaeqaaOGaeyypa0Zaa8quaeaacaWGdbWaaSba aSqaaiaadMgacaWGQbGaam4AaiaadYgaaeqaaOWaaSaaaeaacqGHci ITcaWGobWaaWbaaSqabeaacaWGHbaaaOGaaiikaiaahIhacaGGPaaa baGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaGcdaWcaaqaai abgkGi2kaad6eadaahaaWcbeqaaiaadkgaaaGccaGGOaGaaCiEaiaa cMcaaeaacqGHciITcaWG4bWaaSbaaSqaaiaadYgaaeqaaaaakiabgk HiTiaadUeadaWcaaqaaiabgkGi2kaad6eadaahaaWcbeqaaiaadgga aaGccaGGOaGaaCiEaiaacMcaaeaacqGHciITcaWG4bWaaSbaaSqaai aadMgaaeqaaaaakmaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGa amOyaaaakiaacIcacaWH4bGaaiykaaqaaiabgkGi2kaadIhadaWgaa WcbaGaam4AaaqabaaaaOGaamizaiaadAfaaSqaaiaadAfadaWgaaad baGaamyzaaqabaaaleqaniabgUIiYdGccaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWGXbWaaSbaaSqaaiaadggacaWGPbGaamOyaaqabaGccqGH9a qpdaWdrbqaamaalaaabaGaeyOaIyRaamOtamaaCaaaleqabaGaamyy aaaakiaacIcacaWH4bGaaiykaaqaaiabgkGi2kaadIhadaWgaaWcba GaamyAaaqabaaaaOGaamytamaaCaaaleqabaGaamOyaaaakiaacIca caWH4bGaaiykaiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aa GcbaGaeqiWda3aaSbaaSqaaiaadggacaWGIbaabeaakiabg2da9maa pefabaWaaSaaaeaacaaIXaaabaGaam4saaaacaWGnbWaaWbaaSqabe aacaWGHbaaaOGaaiikaiaahIhacaGGPaGaamytamaaCaaaleqabaGa amOyaaaakiaacIcacaWH4bGaaiykaiaadsgacaWGwbaaleaacaWGwb WaaSbaaWqaaiaadwgaaeqaaaWcbeqdcqGHRiI8aaaaaa@A763@

and the force F is defined in the usual way.  These formulas can easily be re-written as matrix operations, but the details are left as an exercise.  The integrals defining k iakb MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaWGPbGaamyyai aadUgacaWGIbaabeaaaaa@35A7@  may be evaluated using the full integration scheme or reduced integration (hourglass control may be required in this case).  The remaining integrals must be evaluated using reduced integration to avoid element locking.

 

5. Note that, although the pressure variables are local to the elements, they cannot be eliminated from the element stiffness matrix, since doing so would reduce the element stiffness matrix to the usual, non-hybrid form.  Consequently, hybrid elements increase the cost of storing and solving the system of equations.

 

 

 

 

8.6.5 Example hybrid FEM code

 

As always, we provide simple example FEM codes to illustrate actual implementation.  The codes can be downloaded from

https://github.com/albower/Applied_Mechanics_of_Solids

 

The code is in a file named FEM_hybrid.m.   It should be run with the input file volumetric_locking_demo_linear.txt.   The code solves the pressurized cylinder problem discussed in Section 8.6.2.   Run the code for yourself to check that hybrid elements give correct predictions even for fully incompressible materials.