2.6 The first and second laws of thermodynamics for continua 

 

 

Consider a sub-region V of a deformed solid with surface A, as shown in the figure.   The solid has mass density ρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdihaaa@32A0@  (mass per unit deformed volume) Define:

 

· The heat flux vector q flowing through the solid , which is defined so that dQ=qndA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadgfacqGH9aqpcaWHXbGaey yXICTaaCOBaiaadsgacaWGbbaaaa@398F@  is the heat flux crossing an internal surface with area dA and normal n in the deformed solid;

 

· The heat supply q , defined so that dQ= qdV is the heat supplied from an external source into a volume element dV in the deformed solid;

 

· The net heat flux into the solid Q= V qdV A qndA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuaiabg2da9maapefabaGaamyCai aadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaeyOeI0Yaa8qu aeaacaWHXbGaeyyXICTaaCOBaiaadsgacaWGbbaaleaacaWGbbaabe qdcqGHRiI8aaaa@428C@

 

· The velocity field in the solid v

 

· The stretch rate D ij = 1 2 v i x j + v j x i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaWa aSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaGccqGHRaWkdaWcaaqa aiabgkGi2kaadAhadaWgaaWcbaGaamOAaaqabaaakeaacqGHciITca WG4bWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaaa@46EE@  

 

· The Cauchy stress distribution in the solid σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Wdaaa@322F@

 

· The net rate of mechanical work done on the solid W= V ρbv dV+ A n(σ v)dA MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vaiabg2da9maapefabaGaeqyWdi NaaCOyaiabgwSixlaahAhaaSqaaiaadAfaaeqaniabgUIiYdGccaWG KbGaamOvaiabgUcaRmaapefabaGaaCOBaiabgwSixlaacIcacaWHdp aaleaacaWGbbaabeqdcqGHRiI8aOGaaCODaiaacMcacaWGKbGaamyq aaaa@4A3B@

 

· The total kinetic energy KE= V 1 2 ρ( v i v i )dV MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4saiaadweacqGH9aqpdaWdrbqaam aalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdiNaaiikaiaadAhadaWg aaWcbaGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaai ykaiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aaaa@4146@

 

· The total internal energy Ε= V ρεdV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuyLduKaeyypa0Zaa8quaeaacqaHbp GCcqaH1oqzcaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipaaaa@3B9E@  where ε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdugaaa@3287@  is the specific internal energy (internal energy per unit mass)

 

 

· The total entropy S= V ρsdV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uaiabg2da9maapefabaGaeqyWdi Naam4CaiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aaaa@3A5F@ , where s MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4Caaaa@31D8@  is the specific entropy (entropy per unit mass)

 

· The temperature of the solid θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiUdehaaa@3296@ .

 

 

· The net external entropy supplied to the volume dΗ dt = A q θ ndA + V q θ dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaeu4LdGeabaGaam izaiaadshaaaGaeyypa0Zaa8quaeaacqGHsisldaWcaaqaaiaahgha aeaacqaH4oqCaaGaeyyXICTaaCOBaiaadsgacaWGbbaaleaacaWGbb aabeqdcqGHRiI8aOGaey4kaSYaa8quaeaadaWcaaqaaiaadghaaeaa cqaH4oqCaaGaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdaaaa@4A6C@

 

· The specific free energy ψ=εθs MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiYdKNaeyypa0JaeqyTduMaeyOeI0 IaeqiUdeNaam4Caaaa@38F6@

 

· The total free energy Ψ= V ρψdV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiQdKLaeyypa0Zaa8quaeaacqaHbp GCcqaHipqEcaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipaaaa@3BEC@

 

 

The first law of thermodynamics then requires that

d dt (Ε+KE)=Q+W MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaGaaiikaiabfw5afjabgUcaRiaadUeacaWGfbGaaiykaiabg2da 9iaadgfacqGHRaWkcaWGxbaaaa@3C92@

for any volume V.  

 

This condition can also be expressed as

ρ ε t x=const = σ ij D ij q i y i +q MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaqGaaeaadaWcaaqaaiabgk Gi2kabew7aLbqaaiabgkGi2kaadshaaaaacaGLiWoadaWgaaWcbaGa aCiEaiabg2da9iaadogacaWGVbGaamOBaiaadohacaWG0baabeaaki abg2da9iabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWGebWa aSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTmaalaaabaGaeyOaIy RaamyCamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWg aaWcbaGaamyAaaqabaaaaOGaey4kaSIaamyCaaaa@5244@

 

To see this,

 

1.  Recall that

W= V ρ b i v i dV+ A σ ij n i v j dA= V σ ij D ij dV + d dt V 1 2 ρ v i v i dV = V σ ij D ij dV + d dt (KE) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vaiabg2da9maapefabaGaeqyWdi NaamOyamaaBaaaleaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyA aaqabaaabaGaamOvaaqab0Gaey4kIipakiaadsgacaWGwbGaey4kaS Yaa8quaeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamOB amaaBaaaleaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamOAaaqaba aabaGaamyqaaqab0Gaey4kIipakiaadsgacaWGbbGaeyypa0Zaa8qu aeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamiramaaBa aaleaacaWGPbGaamOAaaqabaGccaWGKbGaamOvaaWcbaGaamOvaaqa b0Gaey4kIipakiabgUcaRmaalaaabaGaamizaaqaaiaadsgacaWG0b aaamaacmaabaWaa8quaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiab eg8aYjaadAhadaWgaaWcbaGaamyAaaqabaGccaWG2bWaaSbaaSqaai aadMgaaeqaaOGaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdaa kiaawUhacaGL9baacqGH9aqpdaWdrbqaaiabeo8aZnaaBaaaleaaca WGPbGaamOAaaqabaGccaWGebWaaSbaaSqaaiaadMgacaWGQbaabeaa kiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaey4kaSYaaS aaaeaacaWGKbaabaGaamizaiaadshaaaGaaiikaiaadUeacaWGfbGa aiykaaaa@7D98@

 

2.  The divergence theorem gives

Q= V qdV A qndA = V q q i y i dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyuaiabg2da9maapefabaGaamyCai aadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaeyOeI0Yaa8qu aeaacaWHXbGaeyyXICTaaCOBaiaadsgacaWGbbaaleaacaWGbbaabe qdcqGHRiI8aOGaeyypa0Zaa8quaeaadaqadaqaaiaadghacqGHsisl daWcaaqaaiabgkGi2kaadghadaWgaaWcbaGaamyAaaqabaaakeaacq GHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMca aiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aaaa@5309@

 

3.  Therefore

d dt V ρεdV +KE = V q q i y i dV + V σ ij D ij dV + d dt (KE) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaaeWaaeaadaWdrbqaaiabeg8aYjabew7aLjaadsgacaWGwbaa leaacaWGwbaabeqdcqGHRiI8aOGaey4kaSIaam4saiaadweaaiaawI cacaGLPaaacqGH9aqpdaWdrbqaamaabmaabaGaamyCaiabgkHiTmaa laaabaGaeyOaIyRaamyCamaaBaaaleaacaWGPbaabeaaaOqaaiabgk Gi2kaadMhadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGa amizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGHRaWkdaWdrb qaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWGebWaaSba aSqaaiaadMgacaWGQbaabeaakiaadsgacaWGwbaaleaacaWGwbaabe qdcqGHRiI8aOGaey4kaSYaaSaaaeaacaWGKbaabaGaamizaiaadsha aaGaaiikaiaadUeacaWGfbGaaiykaaaa@63CE@

 

4.  Note also that

d dt V ρεdV = d dt V 0 ρ 0 εdV = V 0 ρ 0 dε dt dV = V ρ dε dt dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbaabaGaamizaiaads haaaWaa8quaeaacqaHbpGCcqaH1oqzcaWGKbGaamOvaaWcbaGaamOv aaqab0Gaey4kIipakiabg2da9maalaaabaGaamizaaqaaiaadsgaca WG0baaamaapefabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaeqyT duMaamizaiaadAfaaSqaaiaadAfadaWgaaadbaGaaGimaaqabaaale qaniabgUIiYdGccqGH9aqpdaWdrbqaaiabeg8aYnaaBaaaleaacaaI WaaabeaakmaalaaabaGaamizaiabew7aLbqaaiaadsgacaWG0baaai aadsgacaWGwbaaleaacaWGwbWaaSbaaWqaaiaaicdaaeqaaaWcbeqd cqGHRiI8aOGaeyypa0Zaa8quaeaacqaHbpGCdaWcaaqaaiaadsgacq aH1oqzaeaacaWGKbGaamiDaaaacaWGKbGaamOvaaWcbaGaamOvaaqa b0Gaey4kIipaaaa@6480@

where ρ 0 =Jρ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaO Gaeyypa0JaamOsaiabeg8aYbaa@3725@  is the mass density per unit reference volume.

 

5.  Finally

V ρ dε dt dV = V q q i y i dV + V σ ij D ij dV MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaeaacqaHbpGCdaWcaaqaaiaads gacqaH1oqzaeaacaWGKbGaamiDaaaacaWGKbGaamOvaaWcbaGaamOv aaqab0Gaey4kIipakiabg2da9maapefabaWaaeWaaeaacaWGXbGaey OeI0YaaSaaaeaacqGHciITcaWGXbWaaSbaaSqaaiaadMgaaeqaaaGc baGaeyOaIyRaamyEamaaBaaaleaacaWGPbaabeaaaaaakiaawIcaca GLPaaacaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabgUca RmaapefabaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaads eadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaamizaiaadAfaaSqaaiaa dAfaaeqaniabgUIiYdaaaa@590F@

 

This must hold for all V, giving the required result.

 

 

The second law of thermodynamics specifies that the net entropy production within V must be non-negative, i.e.

dS dt dΗ dt 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaam4uaaqaaiaads gacaWG0baaaiabgkHiTmaalaaabaGaamizaiabfE5aibqaaiaadsga caWG0baaaiabgwMiZkaaicdaaaa@3C48@

This can also be expressed as

ρ s t + ( q i /θ) y i q θ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSaaaeaacqGHciITcaWGZb aabaGaeyOaIyRaamiDaaaacqGHRaWkdaWcaaqaaiabgkGi2kaacIca caWGXbWaaSbaaSqaaiaadMgaaeqaaOGaai4laiabeI7aXjaacMcaae aacqGHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaakiabgkHiTmaa laaabaGaamyCaaqaaiabeI7aXbaacqGHLjYScaaIWaaaaa@4952@

(this condition is know as the Clausius-Duhem inequality).

 

To see this, simply substitute the definitions of S and dH/dt MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamizaiaadIeacaGGVaGaamizaiaads haaaa@352B@  and use the divergence theorem to re-write the area integral as a volume integral. 

 

 

The first and second laws can be combined to yield the free energy imbalance

σ ij D ij 1 θ q i θ y i ρ ψ t +s θ t 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaadseadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0Ya aSaaaeaacaaIXaaabaGaeqiUdehaaiaadghadaWgaaWcbaGaamyAaa qabaGcdaWcaaqaaiabgkGi2kabeI7aXbqaaiabgkGi2kaadMhadaWg aaWcbaGaamyAaaqabaaaaOGaeyOeI0IaeqyWdi3aaeWaaeaadaWcaa qaaiabgkGi2kabeI8a5bqaaiabgkGi2kaadshaaaGaey4kaSIaam4C amaalaaabaGaeyOaIyRaeqiUdehabaGaeyOaIyRaamiDaaaaaiaawI cacaGLPaaacqGHLjYScaaIWaaaaa@578C@

This form of the second law is particularly helpful if you need to check whether a stress-strain law satisfies the second law of thermodynamics.

 

 

To prove the expression for free energy imbalance,

 

1. Start with the second law, and expand the derivative of q i /θ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyCamaaBaaaleaacaWGPbaabeaaki aac+cacqaH4oqCaaa@3563@

ρ s t + ( q i /θ) y i q θ =ρ s t + 1 θ q i y i q θ 1 θ 2 q i θ y i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSaaaeaacqGHciITcaWGZb aabaGaeyOaIyRaamiDaaaacqGHRaWkdaWcaaqaaiabgkGi2kaacIca caWGXbWaaSbaaSqaaiaadMgaaeqaaOGaai4laiabeI7aXjaacMcaae aacqGHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaakiabgkHiTmaa laaabaGaamyCaaqaaiabeI7aXbaacqGH9aqpcqaHbpGCdaWcaaqaai abgkGi2kaadohaaeaacqGHciITcaWG0baaaiabgUcaRmaalaaabaGa aGymaaqaaiabeI7aXbaadaWcaaqaaiabgkGi2kaadghadaWgaaWcba GaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadMgaaeqa aaaakiabgkHiTmaalaaabaGaamyCaaqaaiabeI7aXbaacqGHsislda WcaaqaaiaaigdaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaaaOGa amyCamaaBaaaleaacaWGPbaabeaakmaalaaabaGaeyOaIyRaeqiUde habaGaeyOaIyRaamyEamaaBaaaleaacaWGPbaabeaaaaaaaa@69AE@

 

2. Use the first law to substitute for q i / y i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIyRaamyCamaaBaaaleaacaWGPb aabeaakiaac+cacqGHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaa @3891@ , which shows that

ρ s t + 1 θ q i y i q θ 1 θ 2 q i θ y i =ρ s t + 1 θ ρ ε t x=const + σ ij D ij 1 θ 2 q i θ y i 0 σ ij D ij ρ t (ψ+θs)+θρ s t 1 θ q i θ y i 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacqaHbpGCdaWcaaqaaiabgkGi2k aadohaaeaacqGHciITcaWG0baaaiabgUcaRmaalaaabaGaaGymaaqa aiabeI7aXbaadaWcaaqaaiabgkGi2kaadghadaWgaaWcbaGaamyAaa qabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaakiab gkHiTmaalaaabaGaamyCaaqaaiabeI7aXbaacqGHsisldaWcaaqaai aaigdaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaaaOGaamyCamaa BaaaleaacaWGPbaabeaakmaalaaabaGaeyOaIyRaeqiUdehabaGaey OaIyRaamyEamaaBaaaleaacaWGPbaabeaaaaGccqGH9aqpcqaHbpGC daWcaaqaaiabgkGi2kaadohaaeaacqGHciITcaWG0baaaiabgUcaRm aalaaabaGaaGymaaqaaiabeI7aXbaadaqadaqaaiabgkHiTiabeg8a YnaaeiaabaWaaSaaaeaacqGHciITcqaH1oqzaeaacqGHciITcaWG0b aaaaGaayjcSdWaaSbaaSqaaiaahIhacqGH9aqpcaWGJbGaam4Baiaa d6gacaWGZbGaamiDaaqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaamiramaaBaaaleaacaWGPbGaamOAaaqabaaa kiaawIcacaGLPaaacqGHsisldaWcaaqaaiaaigdaaeaacqaH4oqCda ahaaWcbeqaaiaaikdaaaaaaOGaamyCamaaBaaaleaacaWGPbaabeaa kmaalaaabaGaeyOaIyRaeqiUdehabaGaeyOaIyRaamyEamaaBaaale aacaWGPbaabeaaaaGccqGHLjYScaaIWaaabaGaeyO0H4Taeq4Wdm3a aSbaaSqaaiaadMgacaWGQbaabeaakiaadseadaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyOeI0IaeqyWdi3aaSaaaeaacqGHciITaeaacqGH ciITcaWG0baaaiaacIcacqaHipqEcqGHRaWkcqaH4oqCcaWGZbGaai ykaiabgUcaRiabeI7aXjabeg8aYnaalaaabaGaeyOaIyRaam4Caaqa aiabgkGi2kaadshaaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaeqiUde haaiaadghadaWgaaWcbaGaamyAaaqabaGcdaWcaaqaaiabgkGi2kab eI7aXbqaaiabgkGi2kaadMhadaWgaaWcbaGaamyAaaqabaaaaOGaey yzImRaaGimaaaaaa@B56E@

 

where we have substituted ε=ψ+θs MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTduMaeyypa0JaeqiYdKNaey4kaS IaeqiUdeNaam4Caaaa@38EB@  and noted that temperature is always positive.  This yields the solution.

 

 

The free energy imbalance can also be expressed as a condition on the total energy and heat flux into the solid

W d(KE) dt dΨ dt V ρs θ t + 1 θ q i θ y i dV 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vaiabgkHiTmaalaaabaGaamizai aacIcacaWGlbGaamyraiaacMcaaeaacaWGKbGaamiDaaaacqGHsisl daWcaaqaaiaadsgacqqHOoqwaeaacaWGKbGaamiDaaaacqGHsislda WdrbqaamaabmaabaGaeqyWdiNaam4CamaalaaabaGaeyOaIyRaeqiU dehabaGaeyOaIyRaamiDaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacq aH4oqCaaGaamyCamaaBaaaleaacaWGPbaabeaakmaalaaabaGaeyOa IyRaeqiUdehabaGaeyOaIyRaamyEamaaBaaaleaacaWGPbaabeaaaa aakiaawIcacaGLPaaacaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4k IipakiabgwMiZkaaicdaaaa@5C2B@

This result follows by integrating the local form over the volume V, and using the stress-power work expression (Sect 2.5.1).