3.6 Linear Viscoelastic Materials MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqabKqzahaeaaaaaaaaa8qacaWFtacaaa@3218@  time-dependent behavior of polymers at small strains

 

Amorphous polymers show complex time-dependent behavior when subjected to a history of stress or strain.  Viscoelasticity theory was developed to approximate this behavior in polymers that are subjected to modest strains (less than 0.5%).  A typical application might be to model the energy dissipation during cyclic loading of a polymeric vibration damper, or to model human tissue responding to an electric shaver.

 

 

 

3.6.1 Features of the small-strain rate dependent response of polymers

 

The principal features of polymers (and some biological tissue) are summarized below

 

1. Polymers strongly resist volume changes at all temperatures.  The bulk modulus (the ratio of volume change to hydrostatic component of stress) is comparable to that of metals or covalently bonded solids;

 

2. The shear response of a polymer is strongly temperature dependent, as shown in the figure. At low temperatures (the glassy regime), the shear modulus is high, and comparable to that of metals.   At a critical temperature (the glass transition) the modulus drops. At temperatures well above the glass transition temperature (the rubbery regime), the shear modulus can be as low as 10 5 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaaicdadaahaaWcbeqaaiabgk HiTiaaiwdaaaaaaa@342E@  times that of most metals.

 

3. At temperatures near the glass transition, the shear modulus is strongly time (and load history) dependent MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  this behavior is discussed in more detail below. The time dependent shear response can be measured in two ways: (i) by applying a step load to a sample; or (ii) by applying a harmonic (sinusoidal) load to the specimen.

 

4. The time dependent modulus of polymers is also temperature dependent.  Reducing the temperature is qualitatively equivalent to increasing the strain rate.   The equivalence of temperature and strain rate is discussed in more detail below.

 

5. Most amorphous polymers are isotropic MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  their stress-strain response is independent of material orientation.

 

 

Time dependent response to step loading

 

The time dependent shear response can be measured in one of two ways:

1. Take a specimen that is free of stress at time t=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabg2da9iaaicdaaaa@3399@ , apply a constant shear stress Δτ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqiXdqhaaa@340B@  for t>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabg6da+iaaicdaaaa@339B@  and measuring the resulting  shear strain ε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdugaaa@3287@  as a function of time ( ε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdugaaa@3287@  denotes the ‘mathematical’, not engineering shear strain).  The results are generally presented by plotting the `creep compliance’ J(t)=2ε(t)/Δτ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiaacIcacaWG0bGaaiykaiabg2 da9iaaikdacqaH1oqzcaGGOaGaamiDaiaacMcacaGGVaGaeuiLdqKa eqiXdqhaaa@3D9A@  as a function of time.

 

2. Take a specimen that is free of stress at time t=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabg2da9iaaicdaaaa@3399@ , apply a constant shear strain Δε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdugaaa@33ED@  for t>0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDaiabg6da+iaaicdaaaa@339B@  and measuring the resulting shear stress τ(t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdqNaaiikaiaadshacaGGPaaaaa@34F7@  as a function of time. In this case the results are presented by plotting the Relaxation Modulus: G(t)=τ(t)/2Δε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiykaiabg2 da9iabes8a0jaacIcacaWG0bGaaiykaiaac+cacaaIYaGaeuiLdqKa eqyTdugaaa@3D97@

 

The results of such a test depend on the degree of cross-linking in the polymer.  Heavily cross-linked materials show `retarded elastic’ behavior, while un-cross-linked materials show steady-state creep.  A detailed description of each type of behavior follows.

 

Retarded Elastic Behavior (observed in strongly crosslinked polymers): The notable features of this behavior are shown in the figure

 

1. There is always an instantaneous shear strain Δε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdugaaa@33ED@  in response to a step change in shear stress Δτ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqiXdqhaaa@340B@ .  The instantaneous compliance J g =2Δε/Δτ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaWGNbaabeaaki abg2da9iaaikdacqqHuoarcqaH1oqzcaGGVaGaeuiLdqKaeqiXdqha aa@3B7E@  is low, and only weakly dependent on temperature.

 

2. At temperatures significantly below the glass transition temperature the solid is essentially elastic (there may be a very slow increase in compliance with time). At low temperatures the compliance is low, comparable to J g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaWGNbaabeaaaa a@32C7@ .

 

3. At temperatures significantly above the glass transition temperature, the solid is very compliant, and the compliance is a function of temperature.  The specimen will show an initial transient response, but will quite quickly settle to a constant strain.  The time taken to reach steady state decreases with increasing temperature, and for some materials the transient may be short enough to be neglected.  In this case the material can be modeled using the hyperelastic constitutive law described in the preceding section.

 

4. For a range of temperatures both above and below the glass transition temperature, the solid shows a slow transient response.

 

5. The deformation is reversible MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  if the loading is removed, the specimen will eventually return to its original configuration, although in the transition regime this may take a very long time.

 

 

Steady-state creep behavior (observed in uncrosslinked polymers and polymer melts): The notable features of this behavior are shown in the figure

 

1. There is always an instantaneous strain in response to a step change in stress, exactly as in crosslinked polymers.

 

2. At low temperatures (well below the glass transition temperature) the solid is essentially elastic (there may be a very slow rate of creep), and has a very low compliance, comparable to J g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaWGNbaabeaaaa a@32C7@ .

 

3. At temperatures above the glass transition temperature, the solid is very compliant.  It may show rubbery behavior for very low stresses, but for most practical ranges of loading the compliance will increase more-or-less linearly with time (especially for short time intervals).  The rate of change of compliance is strongly temperature dependent, as discussed below.

 

4. Above the glass transition temperature, the deformation is irrreversible MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  if the loading is removed, the specimen will not return to its original shape.

 

 

 

Response to harmonic loading

 

In addition to measuring the response of a material to a step change in load, one can subject it to cyclic strain, e.g. with strains that vary sinusoidally with time ε(t)= ε 0 cos(ωt)= ε 0 Re exp(iωt) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTduMaaiikaiaadshacaGGPaGaey ypa0JaeqyTdu2aaSbaaSqaaiaaicdaaeqaaOGaci4yaiaac+gacaGG ZbGaaiikaiabeM8a3jaadshacaGGPaGaeyypa0JaeqyTdu2aaSbaaS qaaiaaicdaaeqaaOGaciOuaiaacwgadaWadaqaaiGacwgacaGG4bGa aiiCaiaacIcacaWGPbGaeqyYdCNaamiDaiaacMcaaiaawUfacaGLDb aaaaa@4EA0@ , where Re(z) denotes the real part of a complex number z.  The stress history will also be harmonic, and could be expressed as τ= τ 0 Re exp(iωt)exp(iδ) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdqNaeyypa0JaeqiXdq3aaSbaaS qaaiaaicdaaeqaaOGaciOuaiaacwgadaWadaqaaiGacwgacaGG4bGa aiiCaiaacIcacaWGPbGaeqyYdCNaamiDaiaacMcaciGGLbGaaiiEai aacchacaGGOaGaamyAaiabes7aKjaacMcaaiaawUfacaGLDbaaaaa@48C1@ , where τ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaaicdaaeqaaa aa@338B@  is the stress amplitude, and δ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqgaaa@3285@  is a phase shift. Both τ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdq3aaSbaaSqaaiaaicdaaeqaaa aa@338B@  and δ depend on ω.  One can define a complex modulus as

G * (ω,T)= τ 0 exp(iδ)/ 2 ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4ramaaCaaaleqabaGaaiOkaaaaki aacIcacqaHjpWDcaGGSaGaamivaiaacMcacqGH9aqpcqaHepaDdaWg aaWcbaGaaGimaaqabaGcciGGLbGaaiiEaiaacchacaGGOaGaamyAai abes7aKjaacMcacaGGVaWaaeWaaeaacaaIYaGaeqyTdu2aaSbaaSqa aiaaicdaaeqaaaGccaGLOaGaayzkaaaaaa@4751@

Experimental data is usually presented by plotting the real part G'(ω,T) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacEcacaGGOaGaeqyYdCNaai ilaiaadsfacaGGPaaaaa@3706@  of the complex modulus G * (ω,T) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4ramaaCaaaleqabaGaaiOkaaaaki aacIcacqaHjpWDcaGGSaGaamivaiaacMcaaaa@3740@  against the inverse of frequency, where

G * =G'+iG'' G'= τ 0 cos(δ)/ 2 ε 0 G''= τ 0 sin(δ)/ 2 ε 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaacaWGhbWaaWbaaSqabeaacaGGQa aaaOGaeyypa0Jaam4raiaacEcacqGHRaWkcaWGPbGaam4raiaacEca caGGNaaabaGaam4raiaacEcacqGH9aqpcqaHepaDdaWgaaWcbaGaaG imaaqabaGcciGGJbGaai4BaiaacohacaGGOaGaeqiTdqMaaiykaiaa c+cadaqadaqaaiaaikdacqaH1oqzdaWgaaWcbaGaaGimaaqabaaaki aawIcacaGLPaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadEeacaGGNaGaai4jai abg2da9iabes8a0naaBaaaleaacaaIWaaabeaakiGacohacaGGPbGa aiOBaiaacIcacqaH0oazcaGGPaGaai4lamaabmaabaGaaGOmaiabew 7aLnaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaaaaa@6BD5@

The variation of the modulus with frequency is illustrated in the figure.

 

 

 

Williams-Landell-Ferry (WLF) Time/temperature equivalence

 

You may have noticed that the figures showing the variation of modulus with temperature and frequency are remarkably similar. Of course these are just sketches, but in fact the connection between temperature and loading rate is more than just a qualitative trend.  This can be demonstrated by means of the following experiment:

1. At temperature T 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIXaaabeaaaa a@32A0@ , subject a specimen to a step change  in shear strain Δε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdugaaa@33ED@  and measure the relaxation modulus G(t, T 1 )=τ(t)/ 2Δε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiilaiaads fadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeyypa0JaeqiXdqNaaiik aiaadshacaGGPaGaai4lamaabmaabaGaaGOmaiabfs5aejabew7aLb GaayjkaiaawMcaaaaa@419A@

 

2. Repeat the experiment at several progressively higher temperatures T 2 , T 3 ... T n MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIYaaabeaaki aacYcacaWGubWaaSbaaSqaaiaaiodaaeqaaOGaaiOlaiaac6cacaGG UaGaamivamaaBaaaleaacaWGUbaabeaaaaa@3935@  to obtain a series of relaxation modulus curves G(t, T 2 ),G(t, T 3 )... MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiilaiaads fadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiilaiaadEeacaGGOaGa amiDaiaacYcacaWGubWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaac6 cacaGGUaGaaiOlaaaa@3ED9@

 

3. Plot log(G(t)) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciiBaiaac+gacaGGNbGaaiikaiaadE eacaGGOaGaamiDaiaacMcacaGGPaaaaa@3827@  -v- log(t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciiBaiaac+gacaGGNbGaaiikaiaads hacaGGPaaaaa@3602@  for the raw data. The results will look like a complicated mess MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  something like the discrete curves in the figure.

 

 

4. However, you will find that if you simply shift the modulus curves for the higher temperatures to the right, you can make the data collapse onto a single master-curve, as shown.

 

5. This observation can be expressed mathematically as log(G)=f log(t)log A(T; T 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciiBaiaac+gacaGGNbGaaiikaiaadE eacaGGPaGaeyypa0JaamOzamaacmaabaGaciiBaiaac+gacaGGNbGa aiikaiaadshacaGGPaGaeyOeI0IaciiBaiaac+gacaGGNbWaamWaae aacaWGbbGaaiikaiaadsfacaGG7aGaamivamaaBaaaleaacaaIXaaa beaakiaacMcaaiaawUfacaGLDbaaaiaawUhacaGL9baaaaa@4A49@  where the function f represents the master curve, and logA(T; T 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciiBaiaac+gacaGGNbGaamyqaiaacI cacaWGubGaai4oaiaadsfadaWgaaWcbaGaaGymaaqabaGccaGGPaaa aa@3931@  represents the horizontal shift from temperature T1 to T A(T; T 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiaacIcacaWGubGaai4oaiaads fadaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@3661@  is known as the WLF shift function.

 

 

6. If you measure A(T; T 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiaacIcacaWGubGaai4oaiaads fadaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@3661@  at a series of temperatures, and plot log(A(T; T 1 )) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciiBaiaac+gacaGGNbGaaiikaiaadg eacaGGOaGaamivaiaacUdacaWGubWaaSbaaSqaaiaaigdaaeqaaOGa aiykaiaacMcaaaa@3A8A@  as a function of temperature T, you will find that the data can be well approximated by a function of the form log[A(T; T 1 )]= C 1 (T T 1 )/ C 2 +(T T 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciiBaiaac+gacaGGNbGaai4waiaadg eacaGGOaGaamivaiaacUdacaWGubWaaSbaaSqaaiaaigdaaeqaaOGa aiykaiaac2facqGH9aqpcqGHsislcaWGdbWaaSbaaSqaaiaaigdaae qaaOGaaiikaiaadsfacqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqa aOGaaiykaiaac+cadaGadaqaaiaadoeadaWgaaWcbaGaaGOmaaqaba GccqGHRaWkcaGGOaGaamivaiabgkHiTiaadsfadaWgaaWcbaGaaGym aaqabaGccaGGPaaacaGL7bGaayzFaaaaaa@4DEF@ . The scaling holds for any two temperatures, but of course C 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaaIXaaabeaaaa a@328F@  and C 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaaIYaaabeaaaa a@3290@  must depend on the choice of T 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIXaaabeaaaa a@32A0@ . In practice it is convenient (and conventional) to use the glass transition temperature as the reference temperature.  The scaling law can then be written as

A(T; T g )=exp C 1 g (T T g ) C 2 g +(T T g ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiaacIcacaWGubGaai4oaiaads fadaWgaaWcbaGaam4zaaqabaGccaGGPaGaeyypa0JaciyzaiaacIha caGGWbWaaiWaaeaacqGHsisldaWcaaqaaiaadoeadaqhaaWcbaGaaG ymaaqaaiaadEgaaaGccaGGOaGaamivaiabgkHiTiaadsfadaWgaaWc baGaam4zaaqabaGccaGGPaaabaGaam4qamaaDaaaleaacaaIYaaaba Gaam4zaaaakiabgUcaRiaacIcacaWGubGaeyOeI0IaamivamaaBaaa leaacaWGNbaabeaakiaacMcaaaaacaGL7bGaayzFaaaaaa@4E04@

The values of C 1 g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaaIXaaabaGaam 4zaaaaaaa@337C@  and C 2 g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaaIYaaabaGaam 4zaaaaaaa@337D@  vary slightly (but surprisingly little) from one polymer to another: typical ranges are   C 1 g 1040 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaaIXaaabaGaam 4zaaaakiabgIKi7kaaigdacaaIWaGaeyOeI0IaaGinaiaaicdaaaa@3911@  and C 2 g 50100Kelvin MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaaIYaaabaGaam 4zaaaakiabgIKi7kaaiwdacaaIWaGaaGPaVlabgkHiTiaaigdacaaI WaGaaGimaiaaykW7caqGlbGaaeyzaiaabYgacaqG2bGaaeyAaiaab6 gaaaa@425E@ . The expression works (again surprisingly) for T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivaaaa@31B9@  both above and below T g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGNbaabeaaaa a@32D1@  - but of course the expression blows up if T< T g C 2 g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivaiabgYda8iaadsfadaWgaaWcba Gaam4zaaqabaGccqGHsislcaWGdbWaa0baaSqaaiaaikdaaeaacaWG Nbaaaaaa@3842@ .  For temperatures below this critical value, the material is perfectly elastic (with constant elastic moduli).

 

7. Note that because A(T; T 1 )=A( T g ; T 1 )A(T; T g ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiaacIcacaWGubGaai4oaiaads fadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeyypa0JaamyqaiaacIca caWGubWaaSbaaSqaaiaadEgaaeqaaOGaai4oaiaadsfadaWgaaWcba GaaGymaaqabaGccaGGPaGaamyqaiaacIcacaWGubGaai4oaiaadsfa daWgaaWcbaGaam4zaaqabaGccaGGPaaaaa@43BC@ , the constants C 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaaIXaaabeaaaa a@328F@ , C 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaaIYaaabeaaaa a@3290@ , T 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIXaaabeaaaa a@32A0@  and C 1 g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaaIXaaabaGaam 4zaaaaaaa@337C@ , C 2 g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaaIYaaabaGaam 4zaaaaaaa@337D@ , T g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGNbaabeaaaa a@32D1@  are related by C 1 = C 1 g C 2 g /( C 2 g + T 1 T g ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaaIXaaabeaaki abg2da9iaadoeadaqhaaWcbaGaaGymaaqaaiaadEgaaaGccaWGdbWa a0baaSqaaiaaikdaaeaacaWGNbaaaOGaai4laiaacIcacaWGdbWaa0 baaSqaaiaaikdaaeaacaWGNbaaaOGaey4kaSIaamivamaaBaaaleaa caaIXaaabeaakiabgkHiTiaadsfadaWgaaWcbaGaam4zaaqabaGcca GGPaaaaa@4333@ , C 2 = C 2 g + T 1 T g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaaIYaaabeaaki abg2da9iaadoeadaqhaaWcbaGaaGOmaaqaaiaadEgaaaGccqGHRaWk caWGubWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamivamaaBaaale aacaWGNbaabeaaaaa@3BD1@ .  This means that if you measure a time dependent modulus G(t, T 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiilaiaads fadaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@3678@  at temperature T 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIXaaabeaaaa a@32A0@ , and know the values of C 1 g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaaIXaaabaGaam 4zaaaaaaa@337C@ , C 2 g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaaIYaaabaGaam 4zaaaaaaa@337D@ , T g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGNbaabeaaaa a@32D1@  for the material, you can immediately calculate the modulus at any other temperature as G(t,T)=G(t/A(T; T 1 ), T 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiilaiaads facaGGPaGaeyypa0Jaam4raiaacIcacaWG0bGaai4laiaadgeacaGG OaGaamivaiaacUdacaWGubWaaSbaaSqaaiaaigdaaeqaaOGaaiykai aacYcacaWGubWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaaa@4259@ , where

A(T; T 1 )=exp C 1 g C 2 g (T T 1 ) C 2 g + T 1 T g C 2 g +T T g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiaacIcacaWGubGaai4oaiaads fadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeyypa0JaciyzaiaacIha caGGWbWaaeWaaeaadaWcaaqaaiabgkHiTiaadoeadaqhaaWcbaGaaG ymaaqaaiaadEgaaaGccaWGdbWaa0baaSqaaiaaikdaaeaacaWGNbaa aOGaaiikaiaadsfacqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaO GaaiykaaqaamaadmaabaGaam4qamaaDaaaleaacaaIYaaabaGaam4z aaaakiabgUcaRiaadsfadaWgaaWcbaGaaGymaaqabaGccqGHsislca WGubWaaSbaaSqaaiaadEgaaeqaaaGccaGLBbGaayzxaaWaamWaaeaa caWGdbWaa0baaSqaaiaaikdaaeaacaWGNbaaaOGaey4kaSIaamivai abgkHiTiaadsfadaWgaaWcbaGaam4zaaqabaaakiaawUfacaGLDbaa aaaacaGLOaGaayzkaaaaaa@5A67@

 

 

 

3.6.2 General constitutive equations for linear viscoelastic solids

 

The general stress-strain law for a linear viscoelastic solid is constructed as follows:

 

· Assume that the material experiences small shape changes and rotations.  The deformation can then be characterized using the infinitesimal strain tensor ε ij = u i / x j + u j / x i /2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maabmaabaGaeyOaIyRaamyDamaaBaaaleaacaWG Pbaabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaO Gaey4kaSIaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaakiaac+ca cqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa Gaai4laiaaikdaaaa@48F8@  defined in Section 2.1.7.

 

· For small strains, all stress measures are equal.  We can use the Cauchy stress σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  as the stress measure.

 

· Assume that for time t<0, the solid is stress free, and ε ij =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaaicdaaaa@365A@ .

 

· For small strains/stresses, we can assume that the stress and strain are related through linear equations.  (This doesn’t mean that stress is proportional to strain, of course MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=yrpeea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciqa caqabeaaceqaamaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@31B7@  instead stress, strain and their rates are related by a time dependent linear ODE, as discussed below)

 

· Assume that the material is isotropic.

 

· In most practical applications we can assume that material response to a pure volumetric strain ( ε 11 = ε 22 = ε 33 =(V V 0 )/(3 V 0 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabew7aLnaaBaaaleaacaaIYaGaaGOmaaqabaGc cqGH9aqpcqaH1oqzdaWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyypa0 JaaiikaiaadAfacqGHsislcaWGwbWaaSbaaSqaaiaaicdaaeqaaOGa aiykaiaac+cacaGGOaGaaG4maiaadAfadaWgaaWcbaGaaGimaaqaba GccaGGPaaaaa@4771@  with all other ε ij =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaaicdaaaa@365A@  ) is perfectly elastic (with no time dependent behavior).  The volumetric strain will induce a state of hydrostatic tension σ 11 = σ 22 = σ 33 =σ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXa aabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGc cqGH9aqpcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyypa0 Jaeq4Wdmhaaa@4008@  with all other σ ij =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaaicdaaaa@3676@ .  The stress is related to the strain by σ=KδV/V MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4WdmNaeyypa0Jaam4saiabes7aKj aadAfacaGGVaGaamOvaaaa@3887@  where K is the bulk modulus.

 

· Viscoelastic response most commonly characterized by the shear relaxation modulus G(t, T 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiilaiaads fadaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@3678@  measured at some reference temperature T 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaaIXaaabeaaaa a@32A0@ .  (Recall that the shear relaxation modulus can be measured by subjecting a specimen to a step increase in shear strain Δε MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeuiLdqKaeqyTdugaaa@33ED@ , and measuring the resulting shear stress τ(t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiXdqNaaiikaiaadshacaGGPaaaaa@34F7@ .  The relaxation modulus follows as  G(t, T 1 )=τ(t)/(2Δε) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiilaiaads fadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeyypa0JaeqiXdqNaaiik aiaadshacaGGPaGaai4laiaacIcacaaIYaGaeuiLdqKaeqyTduMaai ykaaaa@416A@  )

 

· The temperature dependence of the modulus is characterized by the WLF constants C 1 g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaaIXaaabaGaam 4zaaaaaaa@337C@ , C 2 g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaDaaaleaacaaIYaaabaGaam 4zaaaaaaa@337D@  and the glass transition temperature T g MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGNbaabeaaaa a@32D1@ , through the WLF shift function defined in the preceding section.

 

· Since the stress is linearly related to strain, the stress history σ ij (t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaacIcacaWG0bGaaiykaaaa@3708@  resulting from an arbitrary strain history ε ij (t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQb aabeaakiaacIcacaWG0bGaaiykaaaa@36EC@  can be computed by appropriately superposing the step response.  The result is

σ ij (t)= 0 t 2G tξ A T; T 1 , T 1 ε ˙ ij (ξ) 1 3 ε ˙ kk (ξ) δ ij dξ +K ε kk δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiaacIcacaWG0bGaaiykaiabg2da9maapehabaGaaGOmaiaa dEeadaqadaqaamaalaaabaWaaeWaaeaacaWG0bGaeyOeI0IaeqOVdG hacaGLOaGaayzkaaaabaGaamyqamaabmaabaGaamivaiaacUdacaWG ubWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaiaacYcaca WGubWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaWaamWaaeaa cuaH1oqzgaGaamaaBaaaleaacaWGPbGaamOAaaqabaGccaGGOaGaeq OVdGNaaiykaiabgkHiTmaalaaabaGaaGymaaqaaiaaiodaaaGafqyT duMbaiaadaWgaaWcbaGaam4AaiaadUgaaeqaaOGaaiikaiabe67a4j aacMcacqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLBbGa ayzxaaGaamizaiabe67a4bWcbaGaaGimaaqaaiaadshaa0Gaey4kIi pakiabgUcaRiaadUeacqaH1oqzdaWgaaWcbaGaam4AaiaadUgaaeqa aOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaaa@6E5B@

Here, the temperature T is assumed to be constant up to time t.   It is not hard to extend the formula to account for time varying temperatures but the result looks messy and is difficult to visualize.

 

To apply this stress-strain relation in practice, it is necessary to find a convenient way to fit the relaxation modulus G(t, T 1 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiilaiaads fadaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@3678@ .  Various approaches to doing this are described in the next two sections.

 

 

 

3.6.3 Spring-Damper approximations to the relaxation modulus

 

Spring-damper models are often used as a simple, approximate model of the behavior of a viscoelastic solid.  The sketches in the figure below illustrate the general idea: in each case the force applied to the spring-dashpot system represents shear stress, while the extension represents shear strain.

 


 

  It is straightforward to show that stress and strain are related by

kσ+η dσ dt =kη dε dt Maxwell σ=kε+η dε dt Kelvin-Voigt k 1 σ+η dσ dt = k 1 k 2 ε+( k 1 + k 2 )η dε dt 3Parameter MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGRbGaeq4WdmNaey4kaSIaeq 4TdG2aaSaaaeaacaWGKbGaeq4WdmhabaGaamizaiaadshaaaGaeyyp a0Jaam4AaiabeE7aOnaalaaabaGaamizaiabew7aLbqaaiaadsgaca WG0baaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqGnbGaae yyaiaabIhacaqG3bGaaeyzaiaabYgacaqGSbaabaGaeq4WdmNaeyyp a0Jaam4Aaiabew7aLjabgUcaRiabeE7aOnaalaaabaGaamizaiabew 7aLbqaaiaadsgacaWG0baaaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaabUeacaqGLbGaaeiBaiaabAhaca qGPbGaaeOBaiaab2cacaqGwbGaae4BaiaabMgacaqGNbGaaeiDaaqa aiaadUgadaWgaaWcbaGaaGymaaqabaGccqaHdpWCcqGHRaWkcqaH3o aAdaWcaaqaaiaadsgacqaHdpWCaeaacaWGKbGaamiDaaaacqGH9aqp caWGRbWaaSbaaSqaaiaaigdaaeqaaOGaam4AamaaBaaaleaacaaIYa aabeaakiabew7aLjabgUcaRiaacIcacaWGRbWaaSbaaSqaaiaaigda aeqaaOGaey4kaSIaam4AamaaBaaaleaacaaIYaaabeaakiaacMcacq aH3oaAdaWcaaqaaiaadsgacqaH1oqzaeaacaWGKbGaamiDaaaacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaIZaGaaGPaVlaaykW7caqGqbGaaeyyaiaabkhacaqGHbGaaeyB aiaabwgacaqG0bGaaeyzaiaabkhaaaaa@37BA@

 

For a material with time independent bulk modulus K, these can be generalized to multi-axial loading as

e ij = ε ij ε kk δ ij σ ij = S ij +K ε kk δ ij k S ij +η d S ij dt =kη d e ij dt Maxwell S ij =k e ij +η d e ij dt Kelvin-Voigt k 1 S ij +η d S ij dt = k 1 k 2 e ij +( k 1 + k 2 )η d e ij dt 3Parameter MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGLbWaaSbaaSqaaiaadMgaca WGQbaabeaakiabg2da9iabew7aLnaaBaaaleaacaWGPbGaamOAaaqa baGccqGHsislcqaH1oqzdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeq iTdq2aaSbaaSqaaiaadMgacaWGQbaabeaakiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaa beaakiabg2da9iaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey 4kaSIaam4saiabew7aLnaaBaaaleaacaWGRbGaam4AaaqabaGccqaH 0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdqaaiaadUgacaWGtbWaaS baaSqaaiaadMgacaWGQbaabeaakiabgUcaRiabeE7aOnaalaaabaGa amizaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaamizai aadshaaaGaeyypa0Jaam4AaiabeE7aOnaalaaabaGaamizaiaadwga daWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaamizaiaadshaaaGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaab2eacaqGHbGaaeiEaiaabEhacaqGLbGa aeiBaiaabYgaaeaacaWGtbWaaSbaaSqaaiaadMgacaWGQbaabeaaki abg2da9iaadUgacaWGLbWaaSbaaSqaaiaadMgacaWGQbaabeaakiab gUcaRiabeE7aOnaalaaabaGaamizaiaadwgadaWgaaWcbaGaamyAai aadQgaaeqaaaGcbaGaamizaiaadshaaaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8Uaae4saiaabwgacaqGSbGaaeODaiaabMga caqGUbGaaeylaiaabAfacaqGVbGaaeyAaiaabEgacaqG0baabaGaam 4AamaaBaaaleaacaaIXaaabeaakiaadofadaWgaaWcbaGaamyAaiaa dQgaaeqaaOGaey4kaSIaeq4TdG2aaSaaaeaacaWGKbGaam4uamaaBa aaleaacaWGPbGaamOAaaqabaaakeaacaWGKbGaamiDaaaacqGH9aqp caWGRbWaaSbaaSqaaiaaigdaaeqaaOGaam4AamaaBaaaleaacaaIYa aabeaakiaadwgadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSIa aiikaiaadUgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGRbWaaS baaSqaaiaaikdaaeqaaOGaaiykaiabeE7aOnaalaaabaGaamizaiaa dwgadaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaamizaiaadshaaa GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaG4maiaaykW7caaMc8Uaaeiuai aabggacaqGYbGaaeyyaiaab2gacaqGLbGaaeiDaiaabwgacaqGYbaa aaa@AAAD@

 

Qualitatively, these models describe the behavior of a typical polymer.  The Kelvin-Voigt model gives retarded elastic behavior, and represents a crosslinked polymer.  The Maxwell model gives steady state creep, and would represent an uncrosslinked polymer.  With an appropriate choice of k 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaaIXaaabeaaaa a@32B7@  and k 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4AamaaBaaaleaacaaIYaaabeaaaa a@32B8@ , the 3 parameter model can describe both types of behavior.

 

For hand calculations it is often more convenient to use the differential equations relating stress to strain than the integral integral form given in the preceding section.  However, it is straigthforward to calculate the relaxation modulus for the Maxwell and 3 parameter models

G(t)=k e kt/η Maxwell G(t)= k 2 + k 1 e k 1 t/η 3Parameter MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGhbGaaiikaiaadshacaGGPa Gaeyypa0Jaam4AaiaadwgadaahaaWcbeqaaiabgkHiTiaadUgacaWG 0bGaai4laiabeE7aObaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aeytaiaabggacaqG4bGaae4DaiaabwgacaqGSbGaaeiBaaqaaiaadE eacaGGOaGaamiDaiaacMcacqGH9aqpcaWGRbWaaSbaaSqaaiaaikda aeqaaOGaey4kaSIaam4AamaaBaaaleaacaaIXaaabeaakiaadwgada ahaaWcbeqaaiabgkHiTiaadUgadaWgaaadbaGaaGymaaqabaWccaWG 0bGaai4laiabeE7aObaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIZaGaaGPaVlaaykW7 caqGqbGaaeyyaiaabkhacaqGHbGaaeyBaiaabwgacaqG0bGaaeyzai aabkhaaaaa@9B0E@

The Kelvin-Voigt model does not have a well defined relaxation modulus.

 

 

 

3.6.4 Prony series representation for the relaxation modulus

 

The models described in the preceding section are too simple to give a good quantitative fit to any polymer over an extended period of time.  We can make a more versatile model by connecting a bunch of Maxwell elements in series, and adding a spring in parallel with the whole array.  The relaxation modulus for  this material has the form

G(t)= G + i=1 N G i e t/ t i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiykaiabg2 da9iaadEeadaWgaaWcbaGaeyOhIukabeaakiabgUcaRmaaqahabaGa am4ramaaBaaaleaacaWGPbaabeaakiaadwgadaahaaWcbeqaaiabgk HiTiaadshacaGGVaGaamiDamaaBaaameaacaWGPbaabeaaaaaaleaa caWGPbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaaa@45D1@

where G MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4ramaaBaaaleaacqGHEisPaeqaaa aa@3349@  is the steady-state stiffness (represented by the parallel spring), and G i , t i i=1...N MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4ramaaBaaaleaacaWGPbaabeaaki aacYcacaaMc8UaaGPaVlaaykW7caWG0bWaaSbaaSqaaiaadMgaaeqa aOGaaGPaVlaaykW7caaMc8UaamyAaiabg2da9iaaigdacaGGUaGaai Olaiaac6cacaWGobaaaa@4477@  are the stiffnesses and time constants of the Maxwell elements.  These parameters are used directly as the properties of the material. The sum of exponentials is known as the `Prony series.’  

 

 

 

3.6.5 Calibrating the constitutive laws for linear viscoelastic solids

 

Experimental data for the time dependent behavior of polymers can be presented in several different ways:

 

1. The Young’s modulus E(t, T i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaacIcacaWG0bGaaiilaiaads fadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaa@36A9@  or shear modulus G(t, T i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiilaiaads fadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaa@36AB@  as a function of time t,at various temperatures T i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGPbaabeaaaa a@32D3@  

 

2. The tensile compliance C(t, T i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qaiaacIcacaWG0bGaaiilaiaads fadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaa@36A7@  or shear compliance J(t, T i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiaacIcacaWG0bGaaiilaiaads fadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaa@36AE@  as a function of time, at various temperatures;

 

3. The complex modulus G*(ω, T i )=G'(ω, T i )+iG''(ω, T i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacQcacaGGOaGaeqyYdCNaai ilaiaadsfadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyypa0Jaam4r aiaacEcacaGGOaGaeqyYdCNaaiilaiaadsfadaWgaaWcbaGaamyAaa qabaGccaGGPaGaey4kaSIaamyAaiaadEeacaGGNaGaai4jaiaacIca cqaHjpWDcaGGSaGaamivamaaBaaaleaacaWGPbaabeaakiaacMcaaa a@4A42@ , or, more usually, just the real part of the complex modulus G'(ω, T i ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacEcacaGGOaGaeqyYdCNaai ilaiaadsfadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaa@382A@  as a function of frequency ω MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyYdChaaa@32AD@  and temperature. 

 

4. The complex compliance J*(ω,T) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiaacQcacaGGOaGaeqyYdCNaai ilaiaadsfacaGGPaaaaa@370C@  or the real part of the complex compliance J'(ω,T) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiaacEcacaGGOaGaeqyYdCNaai ilaiaadsfacaGGPaaaaa@3709@  as a function of frequency and temperature.

 

 

The material parameters G , G i , t i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4ramaaBaaaleaacqGHEisPaeqaaO GaaiilaiaadEeadaWgaaWcbaGaamyAaaqabaGccaGGSaGaamiDamaa BaaaleaacaWGPbaabeaaaaa@38B6@  must be fit to this data.  For each data set, the first step is to combine data from tests at various temperatures into a master-curve of G(t,T) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiilaiaads facaGGPaaaaa@3587@ , G'(ω,T) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacEcacaGGOaGaeqyYdCNaai ilaiaadsfacaGGPaaaaa@3706@  or J(t,T) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiaacIcacaWG0bGaaiilaiaads facaGGPaaaaa@358A@ , J'(ω,T) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiaacEcacaGGOaGaeqyYdCNaai ilaiaadsfacaGGPaaaaa@3709@  at a single reference temperature, using the WLF scaling procedure described in 3.6.1.  The parameters should then be chosen to give the best fit to this master curve. (A simple way to fit the parameters is to choose t i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiDamaaBaaaleaacaWGPbaabeaaaa a@32F3@  to be spaced at exponentially increasing time intervals, and then choose G , G i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4ramaaBaaaleaacqGHEisPaeqaaO GaaiilaiaadEeadaWgaaWcbaGaamyAaaqabaaaaa@35E9@   to minimize the square of the difference between the predicted and measured values log(G(t)) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaciiBaiaac+gacaGGNbGaaiikaiaadE eacaGGOaGaamiDaiaacMcacaGGPaaaaa@3827@  ).

 

To do the fit, it is helpful to find formulas for G(t,T) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiilaiaads facaGGPaaaaa@3587@  or G'(ω,T) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacEcacaGGOaGaeqyYdCNaai ilaiaadsfacaGGPaaaaa@3706@  in terms of material properties. It is straightforward to show that

G(t,T)= G + i=1 N G i exp(t/ t i ) G'(ω,T)= G + i=1 N G i ω 2 t i 2 1+ ω 2 t i 2 G''(ω,T)= i=1 N G i ω t i 1+ ω 2 t i 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGhbGaaiikaiaadshacaGGSa GaamivaiaacMcacqGH9aqpcaWGhbWaaSbaaSqaaiabg6HiLcqabaGc cqGHRaWkdaaeWbqaaiaadEeadaWgaaWcbaGaamyAaaqabaGcciGGLb GaaiiEaiaacchacaGGOaGaeyOeI0IaamiDaiaac+cacaWG0bWaaSba aSqaaiaadMgaaeqaaOGaaiykaaWcbaGaamyAaiabg2da9iaaigdaae aacaWGobaaniabggHiLdaakeaacaWGhbGaai4jaiaacIcacqaHjpWD caGGSaGaamivaiaacMcacqGH9aqpcaWGhbWaaSbaaSqaaiabg6HiLc qabaGccqGHRaWkdaaeWbqaamaalaaabaGaam4ramaaBaaaleaacaWG PbaabeaakiabeM8a3naaCaaaleqabaGaaGOmaaaakiaadshadaqhaa WcbaGaamyAaaqaaiaaikdaaaaakeaacaaIXaGaey4kaSIaeqyYdC3a aWbaaSqabeaacaaIYaaaaOGaamiDamaaDaaaleaacaWGPbaabaGaaG OmaaaaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGobaaniabggHi LdaakeaacaWGhbGaai4jaiaacEcacaGGOaGaeqyYdCNaaiilaiaads facaGGPaGaeyypa0ZaaabCaeaadaWcaaqaaiaadEeadaWgaaWcbaGa amyAaaqabaGccqaHjpWDcaWG0bWaaSbaaSqaaiaadMgaaeqaaaGcba GaaGymaiabgUcaRiabeM8a3naaCaaaleqabaGaaGOmaaaakiaadsha daqhaaWcbaGaamyAaaqaaiaaikdaaaaaaaqaaiaadMgacqGH9aqpca aIXaaabaGaamOtaaqdcqGHris5aaaaaa@8444@

It is slightly more cumbersome to fit the Prony series parameters to compliance measurements.  The compliances can be expressed in terms of  G , G i , t i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4ramaaBaaaleaacqGHEisPaeqaaO GaaiilaiaadEeadaWgaaWcbaGaamyAaaqabaGccaGGSaGaamiDamaa BaaaleaacaWGPbaabeaaaaa@38B6@  as follows

J(t,T)= L 1 1 s 2 G s + i=1 N t i G i t i s+1 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiaacIcacaWG0bGaaiilaiaads facaGGPaGaeyypa0JaamitamaaCaaaleqabaGaeyOeI0IaaGymaaaa kmaacmaabaWaaSaaaeaacaaIXaaabaGaam4CamaaCaaaleqabaGaaG OmaaaaaaGcdaqadaqaamaalaaabaGaam4ramaaBaaaleaacqGHEisP aeqaaaGcbaGaam4CaaaacqGHRaWkdaaeWbqaamaalaaabaGaamiDam aaBaaaleaacaWGPbaabeaakiaadEeadaWgaaWcbaGaamyAaaqabaaa keaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaam4CaiabgUcaRiaaig daaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoa aOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaay 5Eaiaaw2haaaaa@5489@

J'(ω,T)= G'(ω,T) G' (ω,T) 2 +G'' (ω,T) 2 J''(ω,T)= G''(ω,T) G' (ω,T) 2 +G'' (ω,T) 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGkbGaai4jaiaacIcacqaHjp WDcaGGSaGaamivaiaacMcacqGH9aqpdaWcaaqaaiaadEeacaGGNaGa aiikaiabeM8a3jaacYcacaWGubGaaiykaaqaaiaadEeacaGGNaGaai ikaiabeM8a3jaacYcacaWGubGaaiykamaaCaaaleqabaGaaGOmaaaa kiabgUcaRiaadEeacaGGNaGaai4jaiaacIcacqaHjpWDcaGGSaGaam ivaiaacMcadaahaaWcbeqaaiaaikdaaaaaaaGcbaGaamOsaiaacEca caGGNaGaaiikaiabeM8a3jaacYcacaWGubGaaiykaiabg2da9maala aabaGaeyOeI0Iaam4raiaacEcacaGGNaGaaiikaiabeM8a3jaacYca caWGubGaaiykaaqaaiaadEeacaGGNaGaaiikaiabeM8a3jaacYcaca WGubGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadEeacaGG NaGaai4jaiaacIcacqaHjpWDcaGGSaGaamivaiaacMcadaahaaWcbe qaaiaaikdaaaaaaaaaaa@6D68@

where L 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamitamaaCaaaleqabaGaeyOeI0IaaG ymaaaaaaa@3386@  denotes an inverse Laplace transform (which can be calculated using a symbolic manipulation program), and G',G'' MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacEcacaGGSaGaam4raiaacE cacaGGNaaaaa@3529@  were defined above. 

 

If you are given experimental data for Young’s modulus E(t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyraiaacIcacaWG0bGaaiykaaaa@33FC@  or tensile compliance C(t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qaiaacIcacaWG0bGaaiykaaaa@33FA@ , you will need to estimate G(t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiykaaaa@33FE@  or J(t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiaacIcacaWG0bGaaiykaaaa@3401@ .  Precise values can’t be found without knowing the bulk modulus or Poisson’s ratio of the material, but for most practical applications you can assume that the bulk modulus is very large, in which case G(t)=E(t)/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiykaiabg2 da9iaadweacaGGOaGaamiDaiaacMcacaGGVaGaaG4maaaa@3990@  and J(t)=3C(t) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiaacIcacaWG0bGaaiykaiabg2 da9iaaiodacaWGdbGaaiikaiaadshacaGGPaaaaa@38DE@ .

 

 

 

3.6.6 Representative values for viscoelastic properties of polymers

 

The properties of polymers are very sensitive to their molecular structure, so for accurate predictions you will need to obtain data for the particular material you intend to use.  As a rough guide to typical values, the measured relaxation curves for polyisobutylene have been plotted from the data in McCrum, Buckley and Bucknall (1997) in the figure below


 

 

The master-curve of G(t, T g ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4raiaacIcacaWG0bGaaiilaiaads fadaWgaaWcbaGaam4zaaqabaGccaGGPaaaaa@36A9@  and the WLF shift function A(T, T g ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyqaiaacIcacaWGubGaaiilaiaads fadaWgaaWcbaGaam4zaaqabaGccaGGPaaaaa@3683@  for polyisobutylene have been calculated from using this data and are shown below.

 


 

 

 The glass transition temperature for this material is T g =193K MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamivamaaBaaaleaacaWGNbaabeaaki abg2da9iaaigdacaaI5aGaaG4maiaadUeaaaa@36EC@ .  The resulting WLF parameters, together with moduli and time constants for a 7-term Prony series fit to the data are listed in the table below. The shear modulus predicted by the Prony series is shown on the modulus-v-time plot for comparison with the experimental data.