3.5 Hyperelasticity MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbeqcLbCaqaaaaaaaaaWdbiaa=nbiaa a@32CD@  time independent behavior of rubbers and foams subjected to large strains

 

Hyperelastic constitutive laws are used to model materials that respond elastically when subjected to very large strains. They account both for nonlinear material behavior and large shape changes.  The main applications of the theory are (i) to model the rubbery behavior of a polymeric material, and (ii) to model polymeric foams that can be subjected to large reversible shape changes (e.g. a sponge). 

 

In general, the response of a typical polymer is strongly dependent on temperature, strain history and loading rate.  The behavior will be described in more detail in the next section, where we present the theory of viscoelasticity.  For now, we note that polymers have various regimes of mechanical behavior, referred to as ‘glassy,’ ‘viscoelastic’ and ‘rubbery.’   The various regimes can be identified for a particular polymer by applying a sinusoidal variation of shear stress to the solid and measuring the resulting shear strain amplitude.  A typical result is illustrated in the figure, which shows the apparent shear modulus (ratio of stress amplitude to strain amplitude) as a function of temperature.

 

At a critical temperature known as the glass transition temperature, a polymeric material undergoes a dramatic change in mechanical response.  Below this temperature, it behaves like a glass, with a stiff response. Near the glass transition temperature, the stress depends strongly on the strain rate.  At the glass transition temperature, there is a dramatic drop in modulus.  Above this temperature, there is a regime where the polymer shows ‘rubbery’ behavior MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  the response is elastic; the stress does not depend strongly on strain rate or strain history, and the modulus increases with temperature.  All polymers show these general trends, but the extent of each regime, and the detailed behavior within each regime, depend on the solid’s molecular structure.  Heavily cross-linked polymers (elastomers) are the most likely to show ideal rubbery behavior.   Hyperelastic constitutive laws are intended to approximate this behavior.

 

 

Features of the behavior of a solid rubber:

 

1. The material is close to ideally elastic. i.e. (i) when deformed at constant temperature or adiabatically, stress is a function only of current strain and independent of history or rate of loading, (ii) the behavior is reversible: no net work is done on the solid when subjected to a closed cycle of strain under adiabatic or isothermal conditions.

 

2. The material strongly resists volume changes.  The bulk modulus (the ratio of volume change to hydrostatic component of stress) is comparable to that of metals or covalently bonded solids;

 

3. The material is very compliant in shear MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  shear modulus is of the order of 10 5 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGymaiaaicdadaahaaWcbeqaaiabgk HiTiaaiwdaaaaaaa@342E@  times that of most metals;

 

4. The material is isotropic MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  its stress-strain response is independent of material orientation.

 

5. The shear modulus is temperature dependent: the material becomes stiffer as it is heated, in sharp contrast to metals;

 

6. When stretched, the material gives off heat.

 

 

Polymeric foams (e.g. a sponge) share some of these properties:

 

1. They are close to reversible, and show little rate or history dependence.

 

2. In contrast to rubbers, most foams are highly compressible MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  bulk and shear moduli are comparable.

 

3. Foams have a complicated true stress-true strain response, generally resembling sketch in the figure. The finite strain response of the foam in compression is quite different to that in tension, because of buckling in the cell walls.

 

4. Foams can be anisotropic, depending on their cell structure.   Foams with a random cell structure are isotropic. 

 

The literature on stress-strain relations for finite elasticity can be hard to follow, partly because nearly every paper uses a different notation, and partly because there are many different ways to write down the same stress-strain law.   You should find that most of the published literature is consistent with the framework given below MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  but it may take some work to show the equivalence.

 

 

All hyperelastic models are constructed as follows:

 

1. Define the stress-strain relation for the solid by specifying its strain energy density W (which is related to the Helmholtz free energy of the solid by W= ρ 0 ψ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vaiabg2da9iabeg8aYnaaBaaale aacaaIWaaabeaakiabeI8a5baa@3740@ , where ρ 0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaa aa@3386@  is the mass per unit reference volume)   as a function of the deformation gradient tensor (or some strain measure derived from the deformation gradient): W=W(F).    This ensures that the material is perfectly elastic, and also means that we only need to work with a scalar function.  The general form of the strain energy density is guided by experiment; and the formula for strain energy density always contains material properties that can be adjusted to describe a particular material.

 

2. The undeformed material is often assumed to be isotropic MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbiqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326E@  i.e the behavior of the material is independent of the initial orientation of the material with respect to the loading.  If the strain energy density is a function of the Left Cauchy-Green deformation tensor B=F F T MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqaiabg2da9iaahAeacaWHgbWaaW baaSqabeaacaWGubaaaaaa@3554@  the constitutive equation is automatically isotropic.  To see this, note that if we subject the solid to a rigid rotation R before applying the deformation F we find that B=FR (FR) T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqaiabg2da9iaahAeacaWHsbGaai ikaiaahAeacaWHsbGaaiykamaaCaaaleqabaGaamivaaaaaaa@3864@   so B is unchanged by changing the orientation of the specimen.  But if B is used as the deformation measure, then the strain energy must be a function of the invariants of B to ensure that the constitutive equation is frame indifferent (see Sect 2.7 and 3.1).  This is because under a change of reference frame represented by an orthogonal tensor Q the components of B change to B * =QB Q T MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqamaaCaaaleqabaGaaiOkaaaaki abg2da9iaahgfacaWHcbGaaCyuamaaCaaaleqabaGaamivaaaaaaa@371B@ , but the strain energy must be independent of Q to satisfy frame indifference.  The invariants of B * MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqamaaCaaaleqabaGaaiOkaaaaaa a@3286@  and B MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqaaaa@31AB@  are equal.

 

3. For an anisotropic constitutive equation we can make the strain energy density a function of the Right Cauchy-Green tensor C= F T F MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4qaiabg2da9iaahAeadaahaaWcbe qaaiaadsfaaaGccaWHgbaaaa@3560@ .   This is automatically frame indifferent because C * =C MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4qamaaCaaaleqabaGaaiOkaaaaki abg2da9iaahoeaaaa@3463@  under a change of reference frame.   But under a rotation R before deformation a deformation F the Cauchy Green tensor is C= R T F T FR MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4qaiabg2da9iaahkfadaahaaWcbe qaaiaadsfaaaGccaWHgbWaaWbaaSqabeaacaWGubaaaOGaaCOraiaa hkfaaaa@3826@ .  Unlike B, it is not invariant to the orientation of the specimen.

 

4. Formulas for stress in terms of strain are calculated by differentiating the strain energy density as outlined below.

 

 


 

3.5.1 Deformation Measures used in finite elasticity

 

Suppose that a solid is subjected to a displacement field u i ( x k ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyDamaaBaaaleaacaWGPbaabeaaki aacIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaiykaaaa@367A@ , as shown in the figure. Define

 

· The deformation gradient and its Jacobian

F ij = δ ij + u i x j MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGa ey4kaSYaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadMgaaeqaaa GcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaaaaa@4070@        J=det(F) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsaiabg2da9iGacsgacaGGLbGaai iDaiaacIcacaWHgbGaaiykaaaa@37A8@

 

· The Left and Right Cauchy-Green deformation tensors

B=F F T C= F T F B ij = F ik F jk C ij = F ki F kj MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqaiabg2da9iaahAeacaWHgbWaaW baaSqabeaacaWGubaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caWHdbGaeyypa0JaaCOramaaCaaaleqaba GaamivaaaakiaahAeacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam OqamaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpcaWGgbWaaSba aSqaaiaadMgacaWGRbaabeaakiaadAeadaWgaaWcbaGaamOAaiaadU gaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadoeadaWgaa WcbaGaamyAaiaadQgaaeqaaOGaeyypa0JaamOramaaBaaaleaacaWG RbGaamyAaaqabaGccaWGgbWaaSbaaSqaaiaadUgacaWGQbaabeaaaa a@8189@

 

· Invariants of B (these are the conventional definitions)

I 1 =trace(B)= B kk I 2 = 1 2 I 1 2 BB = 1 2 I 1 2 B ik B ki I 3 =detB= J 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGjbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaaeiDaiaabkhacaqGHbGaae4yaiaabwgacaGGOaGa aCOqaiaacMcacqGH9aqpcaWGcbWaaSbaaSqaaiaadUgacaWGRbaabe aaaOqaaiaadMeadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqa aiaaigdaaeaacaaIYaaaamaabmaabaGaamysamaaDaaaleaacaaIXa aabaGaaGOmaaaakiabgkHiTiaahkeacqGHflY1cqGHflY1caWHcbaa caGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaada qadaqaaiaadMeadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHsisl caWGcbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaadkeadaWgaaWcba Gaam4AaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaamysamaaBaaa leaacaaIZaaabeaakiabg2da9iGacsgacaGGLbGaaiiDaiaahkeacq GH9aqpcaWGkbWaaWbaaSqabeaacaaIYaaaaaaaaa@640B@

 

· An alternative set of invariants of B (more convenient for models of nearly incompressible materials MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  note that I ¯ 1 , I ¯ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmysayaaraWaaSbaaSqaaiaaigdaae qaaOGaaiilaiqadMeagaqeamaaBaaaleaacaaIYaaabeaaaaa@3535@  remain constant under a pure volume change)

I ¯ 1 = I 1 J 2/3 = B kk J 2/3 I ¯ 2 = I 2 J 4/3 = 1 2 I ¯ 1 2 BB J 4/3 = 1 2 I ¯ 1 2 B ik B ki J 4/3 J= detB MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaaceWGjbGbaebadaWgaaWcbaGaaG ymaaqabaGccqGH9aqpdaWcaaqaaiaadMeadaWgaaWcbaGaaGymaaqa baaakeaacaWGkbWaaWbaaSqabeaacaaIYaGaai4laiaaiodaaaaaaO GaaeypamaalaaabaGaamOqamaaBaaaleaacaWGRbGaam4Aaaqabaaa keaacaWGkbWaaWbaaSqabeaacaaIYaGaai4laiaaiodaaaaaaaGcba GabmysayaaraWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaa caWGjbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOsamaaCaaaleqaba GaaGinaiaac+cacaaIZaaaaaaakiabg2da9maalaaabaGaaGymaaqa aiaaikdaaaWaaeWaaeaaceWGjbGbaebadaqhaaWcbaGaaGymaaqaai aaikdaaaGccqGHsisldaWcaaqaaiaahkeacqGHflY1cqGHflY1caWH cbaabaGaamOsamaaCaaaleqabaGaaGinaiaac+cacaaIZaaaaaaaaO GaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWa aeWaaeaaceWGjbGbaebadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccq GHsisldaWcaaqaaiaadkeadaWgaaWcbaGaamyAaiaadUgaaeqaaOGa amOqamaaBaaaleaacaWGRbGaamyAaaqabaaakeaacaWGkbWaaWbaaS qabeaacaaI0aGaai4laiaaiodaaaaaaaGccaGLOaGaayzkaaaabaGa amOsaiabg2da9maakaaabaGaciizaiaacwgacaGG0bGaaCOqaaWcbe aaaaaa@6EA2@

 

· Principal stretches and principal stretch directions, specified as follows

1. Let e 1 , e 2 , e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyzamaaBaaaleaacaaIXaaabeaaki aacYcacaWGLbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadwgadaWg aaWcbaGaaG4maaqabaaaaa@37CA@  denote the three eigenvalues of B.  The principal stretches are

λ 1 = e 1 , λ 2 = e 2 , λ 3 = e 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0ZaaOaaaeaacaWGLbWaaSbaaSqaaiaaigdaaeqaaaqabaGc caGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeU7aSnaaBaaa leaacaaIYaaabeaakiabg2da9maakaaabaGaamyzamaaBaaaleaaca aIYaaabeaaaeqaaOGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaeyypa0ZaaOaa aeaacaWGLbWaaSbaaSqaaiaaiodaaeqaaaqabaaaaa@6CA7@

2. Let b 1 , b 2 , b 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyamaaBaaaleaacaaIXaaabeaaki aacYcacaWHIbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaahkgadaWg aaWcbaGaaG4maaqabaaaaa@37CD@  denote three, mutually perpendicular unit eigenvectors of B. These define the principal stretch directions.  (Note: since B is symmetric its eigenvectors are automatically mutually perpendicular as long as no two eigenvalues are the same.  If two, or all three eigenvalues are the same, the eignevectors are not uniquely defined MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  in this case any convenient mutually perpendicular set of eigenvectors can be used).

3. Recall that B can be expressed in terms of its eigenvectors and eigenvalues as

B= λ 1 2 b (1) b (1) + λ 2 2 b (2) b (2) + λ 3 2 b (3) b (3) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOqaiabg2da9iabeU7aSnaaDaaale aacaaIXaaabaGaaGOmaaaakiaahkgadaahaaWcbeqaaiaacIcacaaI XaGaaiykaaaakiabgEPielaahkgadaahaaWcbeqaaiaacIcacaaIXa GaaiykaaaakiabgUcaRiabeU7aSnaaDaaaleaacaaIYaaabaGaaGOm aaaakiaahkgadaahaaWcbeqaaiaacIcacaaIYaGaaiykaaaakiabgE PielaahkgadaahaaWcbeqaaiaacIcacaaIYaGaaiykaaaakiabgUca RiabeU7aSnaaDaaaleaacaaIZaaabaGaaGOmaaaakiaahkgadaahaa WcbeqaaiaacIcacaaIZaGaaiykaaaakiabgEPielaahkgadaahaaWc beqaaiaacIcacaaIZaGaaiykaaaaaaa@57F8@

 

 

 

3.5.2 Stress Measures used in finite elasticity

 

Usually stress-strain laws are given as equations relating Cauchy stress (`true’ stress) σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  to left Cauchy-Green deformation tensor.  For some computations it may be more convenient to use other stress measures.  They are defined below, for convenience.

 

· The Cauchy (“true”) stress represents the force per unit deformed area in the solid and is defined by

n i σ ij = Lim dA0 d P j (n) dA MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOBamaaBaaaleaacaWGPbaabeaaki abeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaWfqaqa aiaadYeacaWGPbGaamyBaaWcbaGaamizaiaadgeacqGHsgIRcaaIWa aabeaakmaalaaabaGaamizaiaadcfadaqhaaWcbaGaamOAaaqaaiaa cIcacaWHUbGaaiykaaaaaOqaaiaadsgacaWGbbaaaaaa@4610@

 

· Kirchhoff stress  τ=Jσ τ ij =J σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaCiXdOGaeyypa0JaamOsaKaaal aaho8acaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabes8a0PWaaSba aSqaaiaadMgacaWGQbaabeaakiabg2da9iaadQeacqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaaaa@482A@

 

· Nominal (First Piola-Kirchhoff) stress   S=J F 1 σ S ij =J F ik 1 σ kj MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4uaiabg2da9iaadQeacaWHgbWaaW baaSqabeaacqGHsislcaaIXaaaaKaaalaaho8acaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadofakmaaBaaale aacaWGPbGaamOAaaqabaGccqGH9aqpcaWGkbGaamOramaaDaaaleaa caWGPbGaam4AaaqaaiabgkHiTiaaigdaaaGccqaHdpWCdaWgaaWcba Gaam4AaiaadQgaaeqaaaaa@51C4@

 

· Material (Second Piola-Kirchhoff) stress   Σ=J F 1 σ F T Σ ij =J F ik 1 σ kl F jl 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaC4Odiabg2da9iaadQeacaWHgbWaaW baaSqabeaacqGHsislcaaIXaaaaKaaalaaho8akiaahAeadaahaaWc beqaaiabgkHiTiaadsfaaaGccaaMc8UaaGPaVlaaykW7caaMc8Uaeu 4Odm1aaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadQeacaWG gbWaa0baaSqaaiaadMgacaWGRbaabaGaeyOeI0IaaGymaaaakiabeo 8aZnaaBaaaleaacaWGRbGaamiBaaqabaGccaWGgbWaa0baaSqaaiaa dQgacaWGSbaabaGaeyOeI0IaaGymaaaaaaa@53EF@

 

 

 

 

3.5.3 Calculating stress-strain relations from the strain energy density

 

The constitutive law for an isotropic hyperelastic material is defined by an equation relating the strain energy density of the material to the deformation gradient, or, for an isotropic solid, to the three invariants of the strain tensor

W(F)=U( I 1 , I 2 , I 3 )= U ¯ ( I ¯ 1 , I ¯ 2 ,J)= U ˜ ( λ 1 , λ 2 , λ 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vaiaacIcacaWHgbGaaiykaiabg2 da9iaadwfacaGGOaGaamysamaaBaaaleaacaaIXaaabeaakiaacYca caWGjbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadMeadaWgaaWcba GaaG4maaqabaGccaGGPaGaeyypa0JabmyvayaaraGaaiikaiqadMea gaqeamaaBaaaleaacaaIXaaabeaakiaacYcaceWGjbGbaebadaWgaa WcbaGaaGOmaaqabaGccaGGSaGaamOsaiaacMcacqGH9aqpdaaiaaqa aiaadwfaaiaawoWaaiaacIcacqaH7oaBdaWgaaWcbaGaaGymaaqaba GccaGGSaGaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaaiilaiabeU7a SnaaBaaaleaacaaIZaaabeaakiaacMcaaaa@5439@

The stress-strain law must then be deduced by differentiating the strain energy density.   This can involve some tedious algebra.  Formulas are listed below for the stress-strain relations for each choice of strain invariant.  The results are derived below

 

 

· Strain energy density in terms of F ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOramaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B4@

σ ij = 1 J F ik W F jk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaadQeaaaGaamOramaa BaaaleaacaWGPbGaam4AaaqabaGcdaWcaaqaaiabgkGi2kaadEfaae aacqGHciITcaWGgbWaaSbaaSqaaiaadQgacaWGRbaabeaaaaaaaa@40C2@

 

· Strain energy density in terms of C ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B1@

σ ij = 2 J F ik W C kl F jl MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGOmaaqaaiaadQeaaaGaamOramaa BaaaleaacaWGPbGaam4AaaqabaGcdaWcaaqaaiabgkGi2kaadEfaae aacqGHciITcaWGdbWaaSbaaSqaaiaadUgacaWGSbaabeaaaaGccaWG gbWaaSbaaSqaaiaadQgacaWGSbaabeaaaaa@43A3@

 

· Strain energy density in terms of I 1 , I 2 , I 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamysamaaBaaaleaacaaIXaaabeaaki aacYcacaWGjbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadMeadaWg aaWcbaGaaG4maaqabaaaaa@3776@

σ ij = 2 I 3 U I 1 + I 1 U I 2 B ij U I 2 B ik B kj +2 I 3 U I 3 δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGOmaaqaamaakaaabaGaamysamaa BaaaleaacaaIZaaabeaaaeqaaaaakmaadmaabaWaaeWaaeaadaWcaa qaaiabgkGi2kaadwfaaeaacqGHciITcaWGjbWaaSbaaSqaaiaaigda aeqaaaaakiabgUcaRiaadMeadaWgaaWcbaGaaGymaaqabaGcdaWcaa qaaiabgkGi2kaadwfaaeaacqGHciITcaWGjbWaaSbaaSqaaiaaikda aeqaaaaaaOGaayjkaiaawMcaaiaadkeadaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyOeI0YaaSaaaeaacqGHciITcaWGvbaabaGaeyOaIyRa amysamaaBaaaleaacaaIYaaabeaaaaGccaWGcbWaaSbaaSqaaiaadM gacaWGRbaabeaakiaadkeadaWgaaWcbaGaam4AaiaadQgaaeqaaaGc caGLBbGaayzxaaGaey4kaSIaaGOmamaakaaabaGaamysamaaBaaale aacaaIZaaabeaaaeqaaOWaaSaaaeaacqGHciITcaWGvbaabaGaeyOa IyRaamysamaaBaaaleaacaaIZaaabeaaaaGccqaH0oazdaWgaaWcba GaamyAaiaadQgaaeqaaaaa@64E8@

 

· Strain energy density in terms of I ¯ 1 , I ¯ 2 ,J MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmysayaaraWaaSbaaSqaaiaaigdaae qaaOGaaiilaiqadMeagaqeamaaBaaaleaacaaIYaaabeaakiaacYca caWGkbaaaa@36BE@

σ ij = 2 J 1 J 2/3 U ¯ I ¯ 1 + I ¯ 1 U ¯ I ¯ 2 B ij I ¯ 1 U ¯ I ¯ 1 +2 I ¯ 2 U ¯ I ¯ 2 δ ij 3 1 J 4/3 U ¯ I ¯ 2 B ik B kj + U ¯ J δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGOmaaqaaiaadQeaaaWaamWaaeaa daWcaaqaaiaaigdaaeaacaWGkbWaaWbaaSqabeaacaaIYaGaai4lai aaiodaaaaaaOWaaeWaaeaadaWcaaqaaiabgkGi2kqadwfagaqeaaqa aiabgkGi2kqadMeagaqeamaaBaaaleaacaaIXaaabeaaaaGccqGHRa WkceWGjbGbaebadaWgaaWcbaGaaGymaaqabaGcdaWcaaqaaiabgkGi 2kqadwfagaqeaaqaaiabgkGi2kqadMeagaqeamaaBaaaleaacaaIYa aabeaaaaaakiaawIcacaGLPaaacaWGcbWaaSbaaSqaaiaadMgacaWG QbaabeaakiabgkHiTmaabmaabaGabmysayaaraWaaSbaaSqaaiaaig daaeqaaOWaaSaaaeaacqGHciITceWGvbGbaebaaeaacqGHciITceWG jbGbaebadaWgaaWcbaGaaGymaaqabaaaaOGaey4kaSIaaGOmaiqadM eagaqeamaaBaaaleaacaaIYaaabeaakmaalaaabaGaeyOaIyRabmyv ayaaraaabaGaeyOaIyRabmysayaaraWaaSbaaSqaaiaaikdaaeqaaa aaaOGaayjkaiaawMcaamaalaaabaGaeqiTdq2aaSbaaSqaaiaadMga caWGQbaabeaaaOqaaiaaiodaaaGaeyOeI0YaaSaaaeaacaaIXaaaba GaamOsamaaCaaaleqabaGaaGinaiaac+cacaaIZaaaaaaakmaalaaa baGaeyOaIyRabmyvayaaraaabaGaeyOaIyRabmysayaaraWaaSbaaS qaaiaaikdaaeqaaaaakiaadkeadaWgaaWcbaGaamyAaiaadUgaaeqa aOGaamOqamaaBaaaleaacaWGRbGaamOAaaqabaaakiaawUfacaGLDb aacqGHRaWkdaWcaaqaaiabgkGi2kqadwfagaqeaaqaaiabgkGi2kaa dQeaaaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaaa@80B6@

 

· Strain energy density in terms of λ 1 , λ 2 , λ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaO GaaiilaiabeU7aSnaaBaaaleaacaaIYaaabeaakiaacYcacqaH7oaB daWgaaWcbaGaaG4maaqabaaaaa@3A28@

σ ij = λ 1 λ 1 λ 2 λ 3 U ˜ λ 1 b i (1) b j (1) + λ 2 λ 1 λ 2 λ 3 U ˜ λ 2 b i (2) b j (2) + λ 3 λ 1 λ 2 λ 3 U ˜ λ 3 b i (3) b j (3) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaeq4UdW2aaSbaaSqaaiaaigdaaeqa aaGcbaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeq4UdW2aaSbaaS qaaiaaikdaaeqaaOGaeq4UdW2aaSbaaSqaaiaaiodaaeqaaaaakmaa laaabaGaeyOaIy7aaacaaeaacaWGvbaacaGLdmaaaeaacqGHciITcq aH7oaBdaWgaaWcbaGaaGymaaqabaaaaOGaamOyamaaDaaaleaacaWG PbaabaGaaiikaiaaigdacaGGPaaaaOGaamOyamaaDaaaleaacaWGQb aabaGaaiikaiaaigdacaGGPaaaaOGaey4kaSYaaSaaaeaacqaH7oaB daWgaaWcbaGaaGOmaaqabaaakeaacqaH7oaBdaWgaaWcbaGaaGymaa qabaGccqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqaH7oaBdaWgaaWc baGaaG4maaqabaaaaOWaaSaaaeaacqGHciITdaaiaaqaaiaadwfaai aawoWaaaqaaiabgkGi2kabeU7aSnaaBaaaleaacaaIYaaabeaaaaGc caWGIbWaa0baaSqaaiaadMgaaeaacaGGOaGaaGOmaiaacMcaaaGcca WGIbWaa0baaSqaaiaadQgaaeaacaGGOaGaaGOmaiaacMcaaaGccqGH RaWkdaWcaaqaaiabeU7aSnaaBaaaleaacaaIZaaabeaaaOqaaiabeU 7aSnaaBaaaleaacaaIXaaabeaakiabeU7aSnaaBaaaleaacaaIYaaa beaakiabeU7aSnaaBaaaleaacaaIZaaabeaaaaGcdaWcaaqaaiabgk Gi2oaaGaaabaGaamyvaaGaay5adaaabaGaeyOaIyRaeq4UdW2aaSba aSqaaiaaiodaaeqaaaaakiaadkgadaqhaaWcbaGaamyAaaqaaiaacI cacaaIZaGaaiykaaaakiaadkgadaqhaaWcbaGaamOAaaqaaiaacIca caaIZaGaaiykaaaaaaa@8590@

 

 

 

Derivations:   We start by deriving the general formula for stress in terms of W(F) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vaiaacIcacaWHgbGaaiykaaaa@33E4@ :

 

1. Note that, by definition, if the solid is subjected to some history of strain, the rate of change of the strain energy density W (F)  must equal the rate of mechanical work done on the material per unit reference volume.

 

2. Recall that the rate of work done per unit undeformed volume by body forces and surface tractions is expressed in terms of the nominal stress S ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33C1@  as S ji F ˙ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGQbGaamyAaa qabaGcceWGgbGbaiaadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@36A8@ .

 

3. Therefore, for any deformation gradient Fij,

dW dt = W F ij F ij t = S ji F ij t MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacaWGKbGaam4vaaqaaiaads gacaWG0baaaiabg2da9maalaaabaGaeyOaIyRaam4vaaqaaiabgkGi 2kaadAeadaWgaaWcbaGaamyAaiaadQgaaeqaaaaakmaalaaabaGaey OaIyRaamOramaaBaaaleaacaWGPbGaamOAaaqabaaakeaacqGHciIT caWG0baaaiabg2da9iaadofadaWgaaWcbaGaamOAaiaadMgaaeqaaO WaaSaaaeaacqGHciITcaWGgbWaaSbaaSqaaiaadMgacaWGQbaabeaa aOqaaiabgkGi2kaadshaaaaaaa@4D8A@

This must hold for all possible F ˙ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmOrayaacaWaaSbaaSqaaiaadMgaca WGQbaabeaaaaa@33BD@ ,so that

W F ij = S ji MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGxbaabaGaey OaIyRaamOramaaBaaaleaacaWGPbGaamOAaaqabaaaaOGaeyypa0Ja am4uamaaBaaaleaacaWGQbGaamyAaaqabaaaaa@3B5C@

 

4. Finally, the formula for Cauchy stress follows from the equation relating σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34AC@  to S ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33C1@

σ ij = 1 J F ik S kj = 1 J F ik W F jk MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaadQeaaaGaamOramaa BaaaleaacaWGPbGaam4AaaqabaGccaWGtbWaaSbaaSqaaiaadUgaca WGQbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaadQeaaaGaamOr amaaBaaaleaacaWGPbGaam4AaaqabaGcdaWcaaqaaiabgkGi2kaadE faaeaacqGHciITcaWGgbWaaSbaaSqaaiaadQgacaWGRbaabeaaaaaa aa@492E@

 

For an isotropic material, it is necessary to find derivatives of the invariants with respect to the components of F in order to compute the stress-strain function for a given strain energy density.  It is straightforward, but somewhat tedious to show that:

                                      I 1 F ij =2 F ij , I 2 F ij =2 I 1 F ij B ik F kj , I 3 F ij =2 I 3 F ji 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGjbWaaSbaaS qaaiaaigdaaeqaaaGcbaGaeyOaIyRaamOramaaBaaaleaacaWGPbGa amOAaaqabaaaaOGaeyypa0JaaGOmaiaadAeadaWgaaWcbaGaamyAai aadQgaaeqaaOGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7daWcaaqaaiabgkGi2kaadMeadaWgaaWcbaGa aGOmaaqabaaakeaacqGHciITcaWGgbWaaSbaaSqaaiaadMgacaWGQb aabeaaaaGccqGH9aqpcaaIYaWaaeWaaeaacaWGjbWaaSbaaSqaaiaa igdaaeqaaOGaamOramaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsi slcaWGcbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaadAeadaWgaaWc baGaam4AaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiilaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaeyOaIy RaamysamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadAeadaWg aaWcbaGaamyAaiaadQgaaeqaaaaakiabg2da9iaaikdacaWGjbWaaS baaSqaaiaaiodaaeqaaOGaamOramaaDaaaleaacaWGQbGaamyAaaqa aiabgkHiTiaaigdaaaaaaa@93B2@

Then,

W F ij = U I 1 I 1 F ij + U I ¯ 2 I 2 F ij + U I 3 I 3 F ij =2 U I 1 + I 1 U I 2 F ij 2 U I 2 B ik F kj +2 I 3 U I 3 F ji 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGxbaabaGaey OaIyRaamOramaaBaaaleaacaWGPbGaamOAaaqabaaaaOGaeyypa0Za aSaaaeaacqGHciITcaWGvbaabaGaeyOaIyRaamysamaaBaaaleaaca aIXaaabeaaaaGcdaWcaaqaaiabgkGi2kaadMeadaWgaaWcbaGaaGym aaqabaaakeaacqGHciITcaWGgbWaaSbaaSqaaiaadMgacaWGQbaabe aaaaGccqGHRaWkdaWcaaqaaiabgkGi2kaadwfaaeaacqGHciITceWG jbGbaebadaWgaaWcbaGaaGOmaaqabaaaaOWaaSaaaeaacqGHciITca WGjbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaamOramaaBaaa leaacaWGPbGaamOAaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITca WGvbaabaGaeyOaIyRaamysamaaBaaaleaacaaIZaaabeaaaaGcdaWc aaqaaiabgkGi2kaadMeadaWgaaWcbaGaaG4maaqabaaakeaacqGHci ITcaWGgbWaaSbaaSqaaiaadMgacaWGQbaabeaaaaGccqGH9aqpcaaI YaWaaeWaaeaadaWcaaqaaiabgkGi2kaadwfaaeaacqGHciITcaWGjb WaaSbaaSqaaiaaigdaaeqaaaaakiabgUcaRiaadMeadaWgaaWcbaGa aGymaaqabaGcdaWcaaqaaiabgkGi2kaadwfaaeaacqGHciITcaWGjb WaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiaadAeadaWg aaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0IaaGOmamaalaaabaGaey OaIyRaamyvaaqaaiabgkGi2kaadMeadaWgaaWcbaGaaGOmaaqabaaa aOGaamOqamaaBaaaleaacaWGPbGaam4AaaqabaGccaWGgbWaaSbaaS qaaiaadUgacaWGQbaabeaakiabgUcaRiaaikdacaWGjbWaaSbaaSqa aiaaiodaaeqaaOWaaSaaaeaacqGHciITcaWGvbaabaGaeyOaIyRaam ysamaaBaaaleaacaaIZaaabeaaaaGccaWGgbWaa0baaSqaaiaadQga caWGPbaabaGaeyOeI0IaaGymaaaaaaa@8F09@

and

σ ij = 1 I 3 F ik W F jk = 2 I 3 U I 1 + I 1 U I 2 B ij U I 2 B ik B kj +2 I 3 U I 3 δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaamaakaaabaGaamysamaa BaaaleaacaaIZaaabeaaaeqaaaaakiaadAeadaWgaaWcbaGaamyAai aadUgaaeqaaOWaaSaaaeaacqGHciITcaWGxbaabaGaeyOaIyRaamOr amaaBaaaleaacaWGQbGaam4AaaqabaaaaOGaeyypa0ZaaSaaaeaaca aIYaaabaWaaOaaaeaacaWGjbWaaSbaaSqaaiaaiodaaeqaaaqabaaa aOWaamWaaeaadaqadaqaamaalaaabaGaeyOaIyRaamyvaaqaaiabgk Gi2kaadMeadaWgaaWcbaGaaGymaaqabaaaaOGaey4kaSIaamysamaa BaaaleaacaaIXaaabeaakmaalaaabaGaeyOaIyRaamyvaaqaaiabgk Gi2kaadMeadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGa amOqamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsisldaWcaaqaai abgkGi2kaadwfaaeaacqGHciITcaWGjbWaaSbaaSqaaiaaikdaaeqa aaaakiaadkeadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaamOqamaaBa aaleaacaWGRbGaamOAaaqabaaakiaawUfacaGLDbaacqGHRaWkcaaI YaWaaOaaaeaacaWGjbWaaSbaaSqaaiaaiodaaeqaaaqabaGcdaWcaa qaaiabgkGi2kaadwfaaeaacqGHciITcaWGjbWaaSbaaSqaaiaaioda aeqaaaaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@7201@

 

When using a strain energy density of the form U ¯ ( I ¯ 1 , I ¯ 2 ,J) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyvayaaraGaaiikaiqadMeagaqeam aaBaaaleaacaaIXaaabeaakiaacYcaceWGjbGbaebadaWgaaWcbaGa aGOmaaqabaGccaGGSaGaamOsaiaacMcaaaa@3909@ ,  we will have to compute the derivatives of the invariants I ¯ 1 , I ¯ 2  and J MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmysayaaraWaaSbaaSqaaiaaigdaae qaaOGaaiilaiqadMeagaqeamaaBaaaleaacaaIYaaabeaakiaabcca caqGHbGaaeOBaiaabsgacaqGGaGaamOsaaaa@3A10@  with respect to the components of F in order to find

                                                         W F ij = U ¯ I ¯ 1 I ¯ 1 F ij + U ¯ I ¯ 2 I ¯ 2 F ij + U ¯ J J F ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITcaWGxbaabaGaey OaIyRaamOramaaBaaaleaacaWGPbGaamOAaaqabaaaaOGaeyypa0Za aSaaaeaacqGHciITceWGvbGbaebaaeaacqGHciITceWGjbGbaebada WgaaWcbaGaaGymaaqabaaaaOWaaSaaaeaacqGHciITceWGjbGbaeba daWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWGgbWaaSbaaSqaai aadMgacaWGQbaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kqadwfa gaqeaaqaaiabgkGi2kqadMeagaqeamaaBaaaleaacaaIYaaabeaaaa GcdaWcaaqaaiabgkGi2kqadMeagaqeamaaBaaaleaacaaIYaaabeaa aOqaaiabgkGi2kaadAeadaWgaaWcbaGaamyAaiaadQgaaeqaaaaaki abgUcaRmaalaaabaGaeyOaIyRabmyvayaaraaabaGaeyOaIyRaamOs aaaadaWcaaqaaiabgkGi2kaadQeaaeaacqGHciITcaWGgbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaaaaa@5FC9@

We find that

J F ij =J F ji 1 I ¯ 1 F ij = 1 J 2/3 I 1 F ij 2 I 1 3 J 5/3 J F ij = 2 J 2/3 F ij I 1 3 F ji 1 = 2 J 2/3 F ij 2 3 I ¯ 1 F ji 1 I ¯ 2 F ij = 1 J 4/3 I 2 F ij 4 I 2 3 J 7/3 J F ij = 2 J 4/3 I 1 F ij B ik F kj 2 I 2 3 F ji 1 = 2 J 2/3 I ¯ 1 F ij 2 J 4/3 B ik F kj 4 I ¯ 2 3 F ji 1 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaGabeaadaWcaaqaaiabgkGi2kaadQeaae aacqGHciITcaWGgbWaaSbaaSqaaiaadMgacaWGQbaabeaaaaGccqGH 9aqpcaWGkbGaamOramaaDaaaleaacaWGQbGaamyAaaqaaiabgkHiTi aaigdaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7daWcaaqaaiabgkGi2kqadMeagaqeamaa BaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaadAeadaWgaaWcbaGaam yAaiaadQgaaeqaaaaakiabg2da9maalaaabaGaaGymaaqaaiaadQea daahaaWcbeqaaiaaikdacaGGVaGaaG4maaaaaaGcdaWcaaqaaiabgk Gi2kaadMeadaWgaaWcbaGaaGymaaqabaaakeaacqGHciITcaWGgbWa aSbaaSqaaiaadMgacaWGQbaabeaaaaGccqGHsisldaWcaaqaaiaaik dacaWGjbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaG4maiaadQeadaah aaWcbeqaaiaaiwdacaGGVaGaaG4maaaaaaGcdaWcaaqaaiabgkGi2k aadQeaaeaacqGHciITcaWGgbWaaSbaaSqaaiaadMgacaWGQbaabeaa aaGccaaMc8Uaeyypa0ZaaSaaaeaacaaIYaaabaGaamOsamaaCaaale qabaGaaGOmaiaac+cacaaIZaaaaaaakmaabmaabaGaamOramaaBaaa leaacaWGPbGaamOAaaqabaGccqGHsisldaWcaaqaaiaadMeadaWgaa WcbaGaaGymaaqabaaakeaacaaIZaaaaiaaykW7caWGgbWaa0baaSqa aiaadQgacaWGPbaabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaai abg2da9maalaaabaGaaGOmaaqaaiaadQeadaahaaWcbeqaaiaaikda caGGVaGaaG4maaaaaaGccaWGgbWaaSbaaSqaaiaadMgacaWGQbaabe aakiabgkHiTmaalaaabaGaaGOmaaqaaiaaiodaaaGabmysayaaraWa aSbaaSqaaiaaigdaaeqaaOGaaGPaVlaadAeadaqhaaWcbaGaamOAai aadMgaaeaacqGHsislcaaIXaaaaaGcbaWaaSaaaeaacqGHciITceWG jbGbaebadaWgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWGgbWaaS baaSqaaiaadMgacaWGQbaabeaaaaGccqGH9aqpdaWcaaqaaiaaigda aeaacaWGkbWaaWbaaSqabeaacaaI0aGaai4laiaaiodaaaaaaOWaaS aaaeaacqGHciITcaWGjbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOa IyRaamOramaaBaaaleaacaWGPbGaamOAaaqabaaaaOGaeyOeI0YaaS aaaeaacaaI0aGaamysamaaBaaaleaacaaIYaaabeaaaOqaaiaaioda caWGkbWaaWbaaSqabeaacaaI3aGaai4laiaaiodaaaaaaOWaaSaaae aacqGHciITcaWGkbaabaGaeyOaIyRaamOramaaBaaaleaacaWGPbGa amOAaaqabaaaaOGaeyypa0ZaaSaaaeaacaaIYaaabaGaamOsamaaCa aaleqabaGaaGinaiaac+cacaaIZaaaaaaakmaabmaabaGaamysamaa BaaaleaacaaIXaaabeaakiaadAeadaWgaaWcbaGaamyAaiaadQgaae qaaOGaeyOeI0IaamOqamaaBaaaleaacaWGPbGaam4AaaqabaGccaWG gbWaaSbaaSqaaiaadUgacaWGQbaabeaakiabgkHiTmaalaaabaGaaG OmaiaadMeadaWgaaWcbaGaaGOmaaqabaaakeaacaaIZaaaaiaadAea daqhaaWcbaGaamOAaiaadMgaaeaacqGHsislcaaIXaaaaaGccaGLOa GaayzkaaGaeyypa0ZaaSaaaeaacaaIYaaabaGaamOsamaaCaaaleqa baGaaGOmaiaac+cacaaIZaaaaaaakiqadMeagaqeamaaBaaaleaaca aIXaaabeaakiaadAeadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOe I0YaaSaaaeaacaaIYaaabaGaamOsamaaCaaaleqabaGaaGinaiaac+ cacaaIZaaaaaaakiaadkeadaWgaaWcbaGaamyAaiaadUgaaeqaaOGa amOramaaBaaaleaacaWGRbGaamOAaaqabaGccqGHsisldaWcaaqaai aaisdaceWGjbGbaebadaWgaaWcbaGaaGOmaaqabaaakeaacaaIZaaa aiaadAeadaqhaaWcbaGaamOAaiaadMgaaeaacqGHsislcaaIXaaaaa aaaa@FC1C@

 

Thus,

σ ij = 1 J F ik W F jk = 2 J 5/3 U ¯ I ¯ 1 + I ¯ 1 U ¯ I ¯ 2 B ij 2 3J I ¯ 1 U ¯ I ¯ 1 +2 I ¯ 2 U ¯ I ¯ 2 δ ij 2 J 7/3 U ¯ I ¯ 2 B ik B kj + U ¯ J δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaadQeaaaGaamOramaa BaaaleaacaWGPbGaam4AaaqabaGcdaWcaaqaaiabgkGi2kaadEfaae aacqGHciITcaWGgbWaaSbaaSqaaiaadQgacaWGRbaabeaaaaGccqGH 9aqpdaWcaaqaaiaaikdaaeaacaWGkbWaaWbaaSqabeaacaaI1aGaai 4laiaaiodaaaaaaOWaaeWaaeaadaWcaaqaaiabgkGi2kqadwfagaqe aaqaaiabgkGi2kqadMeagaqeamaaBaaaleaacaaIXaaabeaaaaGccq GHRaWkceWGjbGbaebadaWgaaWcbaGaaGymaaqabaGcdaWcaaqaaiab gkGi2kqadwfagaqeaaqaaiabgkGi2kqadMeagaqeamaaBaaaleaaca aIYaaabeaaaaaakiaawIcacaGLPaaacaWGcbWaaSbaaSqaaiaadMga caWGQbaabeaakiabgkHiTmaalaaabaGaaGOmaaqaaiaaiodacaWGkb aaamaabmaabaGabmysayaaraWaaSbaaSqaaiaaigdaaeqaaOWaaSaa aeaacqGHciITceWGvbGbaebaaeaacqGHciITceWGjbGbaebadaWgaa WcbaGaaGymaaqabaaaaOGaey4kaSIaaGOmaiqadMeagaqeamaaBaaa leaacaaIYaaabeaakmaalaaabaGaeyOaIyRabmyvayaaraaabaGaey OaIyRabmysayaaraWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaa wMcaaiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislda WcaaqaaiaaikdaaeaacaWGkbWaaWbaaSqabeaacaaI3aGaai4laiaa iodaaaaaaOWaaSaaaeaacqGHciITceWGvbGbaebaaeaacqGHciITce WGjbGbaebadaWgaaWcbaGaaGOmaaqabaaaaOGaamOqamaaBaaaleaa caWGPbGaam4AaaqabaGccaWGcbWaaSbaaSqaaiaadUgacaWGQbaabe aakiabgUcaRmaalaaabaGaeyOaIyRabmyvayaaraaabaGaeyOaIyRa amOsaaaacqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@8AD3@

 

Next, we derive the stress-strain relation in terms of a strain energy density U ˜ ( λ 1 , λ 2 , λ 3 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaacaaeaacaWGvbaacaGLdmaacaGGOa Gaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaaiilaiabeU7aSnaaBaaa leaacaaIYaaabeaakiaacYcacqaH7oaBdaWgaaWcbaGaaG4maaqaba GccaGGPaaaaa@3D27@  that is expressed as a function of the principal strains.  Note first that

                                         U ˜ ( λ 1 , λ 2 , λ 3 )=U( I 1 , I 2 , I 3 ), I 1 = λ 1 2 + λ 2 2 + λ 3 2 , I 2 = λ 1 2 λ 2 2 + λ 2 2 λ 3 2 + λ 1 2 λ 3 2 , I 3 = λ 1 2 λ 2 2 λ 3 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaadaaiaaqaaiaadwfaaiaawoWaai aacIcacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaGGSaGaeq4UdW2a aSbaaSqaaiaaikdaaeqaaOGaaiilaiabeU7aSnaaBaaaleaacaaIZa aabeaakiaacMcacqGH9aqpcaWGvbGaaiikaiaadMeadaWgaaWcbaGa aGymaaqabaGccaGGSaGaamysamaaBaaaleaacaaIYaaabeaakiaacY cacaWGjbWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaacYcacaaMc8Ua aGPaVdqaaiaadMeadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH7o aBdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcqaH7oaBdaqh aaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH7oaBdaqhaaWcba GaaG4maaqaaiaaikdaaaGccaGGSaGaaGPaVlaaykW7caaMc8Uaamys amaaBaaaleaacaaIYaaabeaakiabg2da9iabeU7aSnaaDaaaleaaca aIXaaabaGaaGOmaaaakiabeU7aSnaaDaaaleaacaaIYaaabaGaaGOm aaaakiabgUcaRiabeU7aSnaaDaaaleaacaaIYaaabaGaaGOmaaaaki abeU7aSnaaDaaaleaacaaIZaaabaGaaGOmaaaakiabgUcaRiabeU7a SnaaDaaaleaacaaIXaaabaGaaGOmaaaakiabeU7aSnaaDaaaleaaca aIZaaabaGaaGOmaaaakiaacYcacaaMc8UaaGPaVlaadMeadaWgaaWc baGaaG4maaqabaGccqGH9aqpcqaH7oaBdaqhaaWcbaGaaGymaaqaai aaikdaaaGccqaH7oaBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqaH 7oaBdaqhaaWcbaGaaG4maaqaaiaaikdaaaaaaaa@8858@

so that the chain rule gives

U ˜ λ i =2 λ i U I 1 + I 1 λ i 2 U I 2 + I 3 λ i 2 U I 3 ,(i=1,2,3) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaaSaaaeaacqGHciITdaaiaaqaaiaadw faaiaawoWaaaqaaiabgkGi2kabeU7aSnaaBaaaleaacaWGPbaabeaa aaGccqGH9aqpcaaIYaGaeq4UdW2aaSbaaSqaaiaadMgaaeqaaOWaae WaaeaadaWcaaqaaiabgkGi2kaadwfaaeaacqGHciITcaWGjbWaaSba aSqaaiaaigdaaeqaaaaakiabgUcaRmaabmaabaGaamysamaaBaaale aacaaIXaaabeaakiabgkHiTiabeU7aSnaaDaaaleaacaWGPbaabaGa aGOmaaaaaOGaayjkaiaawMcaamaalaaabaGaeyOaIyRaamyvaaqaai abgkGi2kaadMeadaWgaaWcbaGaaGOmaaqabaaaaOGaey4kaSYaaSaa aeaacaWGjbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeq4UdW2aa0baaS qaaiaadMgaaeaacaaIYaaaaaaakmaalaaabaGaeyOaIyRaamyvaaqa aiabgkGi2kaadMeadaWgaaWcbaGaaG4maaqabaaaaaGccaGLOaGaay zkaaGaaiilaiaaykW7caaMc8UaaiikaiaadMgacqGH9aqpcaaIXaGa aiilaiaaikdacaGGSaGaaG4maiaacMcaaaa@684F@

Using this and the expression that relates the stress components to the derivatives of U,

σ ij = 1 I 3 F ik W F kj = 2 I 3 U I 1 + I 1 U I 2 B ij U I 2 B ik B kj +2 I 3 U I 3 δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaamaakaaabaGaamysamaa BaaaleaacaaIZaaabeaaaeqaaaaakiaadAeadaWgaaWcbaGaamyAai aadUgaaeqaaOWaaSaaaeaacqGHciITcaWGxbaabaGaeyOaIyRaamOr amaaBaaaleaacaWGRbGaamOAaaqabaaaaOGaeyypa0ZaaSaaaeaaca aIYaaabaWaaOaaaeaacaWGjbWaaSbaaSqaaiaaiodaaeqaaaqabaaa aOWaamWaaeaadaqadaqaamaalaaabaGaeyOaIyRaamyvaaqaaiabgk Gi2kaadMeadaWgaaWcbaGaaGymaaqabaaaaOGaey4kaSIaamysamaa BaaaleaacaaIXaaabeaakmaalaaabaGaeyOaIyRaamyvaaqaaiabgk Gi2kaadMeadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGa amOqamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsisldaWcaaqaai abgkGi2kaadwfaaeaacqGHciITcaWGjbWaaSbaaSqaaiaaikdaaeqa aaaakiaadkeadaWgaaWcbaGaamyAaiaadUgaaeqaaOGaamOqamaaBa aaleaacaWGRbGaamOAaaqabaaakiaawUfacaGLDbaacqGHRaWkcaaI YaWaaOaaaeaacaWGjbWaaSbaaSqaaiaaiodaaeqaaaqabaGcdaWcaa qaaiabgkGi2kaadwfaaeaacqGHciITcaWGjbWaaSbaaSqaaiaaioda aeqaaaaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@7201@

we find that the principal stresses σ 1 , σ 2 , σ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaO Gaaiilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiaacYcacqaHdpWC daWgaaWcbaGaaG4maaqabaaaaa@3A55@  are related to the corresponding principal stretches λ 1 , λ 2 , λ 3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaO GaaiilaiabeU7aSnaaBaaaleaacaaIYaaabeaakiaacYcacqaH7oaB daWgaaWcbaGaaG4maaqabaaaaa@3A28@  (square-roots of the eigenvalues of B) through

σ i = λ i λ 1 λ 2 λ 3 U ˜ λ i ,(i=1,2,3) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgaaeqaaO Gaeyypa0ZaaSaaaeaacqaH7oaBdaWgaaWcbaGaamyAaaqabaaakeaa cqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqaH7oaBdaWgaaWcbaGaaG OmaaqabaGccqaH7oaBdaWgaaWcbaGaaG4maaqabaaaaOWaaSaaaeaa cqGHciITdaaiaaqaaiaadwfaaiaawoWaaaqaaiabgkGi2kabeU7aSn aaBaaaleaacaWGPbaabeaaaaGccaGGSaGaaGPaVlaaykW7caGGOaGa amyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaaiykaa aa@519D@

The spectral decomposition for B in terms of its eigenvalues λ 1 2 , λ 2 2 , λ 3 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4UdW2aa0baaSqaaiaaigdaaeaaca aIYaaaaOGaaiilaiabeU7aSnaaDaaaleaacaaIYaaabaGaaGOmaaaa kiaacYcacqaH7oaBdaqhaaWcbaGaaG4maaqaaiaaikdaaaaaaa@3C5F@  and eigenvectors b (1) , b (2) , b (3) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyamaaCaaaleqabaGaaiikaiaaig dacaGGPaaaaOGaaiilaiaahkgadaahaaWcbeqaaiaacIcacaaIYaGa aiykaaaakiaacYcacaWHIbWaaWbaaSqabeaacaGGOaGaaG4maiaacM caaaaaaa@3BDA@

B ij = λ 1 2 b i (1) b j (1) + λ 2 2 b i (2) b j (2) + λ 3 2 b i (3) b j (3) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOqamaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH7oaBdaqhaaWcbaGaaGymaaqaaiaaikdaaaGc caWGIbWaa0baaSqaaiaadMgaaeaacaGGOaGaaGymaiaacMcaaaGcca WGIbWaa0baaSqaaiaadQgaaeaacaGGOaGaaGymaiaacMcaaaGccqGH RaWkcqaH7oaBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaWGIbWaa0 baaSqaaiaadMgaaeaacaGGOaGaaGOmaiaacMcaaaGccaWGIbWaa0ba aSqaaiaadQgaaeaacaGGOaGaaGOmaiaacMcaaaGccqGHRaWkcqaH7o aBdaqhaaWcbaGaaG4maaqaaiaaikdaaaGccaWGIbWaa0baaSqaaiaa dMgaaeaacaGGOaGaaG4maiaacMcaaaGccaWGIbWaa0baaSqaaiaadQ gaaeaacaGGOaGaaG4maiaacMcaaaaaaa@596B@

now allows the stress tensor to be written as

σ ij = λ 1 λ 1 λ 2 λ 3 U ˜ λ 1 b i (1) b j (1) + λ 2 λ 1 λ 2 λ 3 U ˜ λ 2 b i (2) b j (2) + λ 3 λ 1 λ 2 λ 3 U ˜ λ 3 b i (3) b j (3) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaeq4UdW2aaSbaaSqaaiaaigdaaeqa aaGcbaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeq4UdW2aaSbaaS qaaiaaikdaaeqaaOGaeq4UdW2aaSbaaSqaaiaaiodaaeqaaaaakmaa laaabaGaeyOaIy7aaacaaeaacaWGvbaacaGLdmaaaeaacqGHciITcq aH7oaBdaWgaaWcbaGaaGymaaqabaaaaOGaamOyamaaDaaaleaacaWG PbaabaGaaiikaiaaigdacaGGPaaaaOGaamOyamaaDaaaleaacaWGQb aabaGaaiikaiaaigdacaGGPaaaaOGaey4kaSYaaSaaaeaacqaH7oaB daWgaaWcbaGaaGOmaaqabaaakeaacqaH7oaBdaWgaaWcbaGaaGymaa qabaGccqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqaH7oaBdaWgaaWc baGaaG4maaqabaaaaOWaaSaaaeaacqGHciITdaaiaaqaaiaadwfaai aawoWaaaqaaiabgkGi2kabeU7aSnaaBaaaleaacaaIYaaabeaaaaGc caWGIbWaa0baaSqaaiaadMgaaeaacaGGOaGaaGOmaiaacMcaaaGcca WGIbWaa0baaSqaaiaadQgaaeaacaGGOaGaaGOmaiaacMcaaaGccqGH RaWkdaWcaaqaaiabeU7aSnaaBaaaleaacaaIZaaabeaaaOqaaiabeU 7aSnaaBaaaleaacaaIXaaabeaakiabeU7aSnaaBaaaleaacaaIYaaa beaakiabeU7aSnaaBaaaleaacaaIZaaabeaaaaGcdaWcaaqaaiabgk Gi2oaaGaaabaGaamyvaaGaay5adaaabaGaeyOaIyRaeq4UdW2aaSba aSqaaiaaiodaaeqaaaaakiaadkgadaqhaaWcbaGaamyAaaqaaiaacI cacaaIZaGaaiykaaaakiaadkgadaqhaaWcbaGaamOAaaqaaiaacIca caaIZaGaaiykaaaaaaa@8590@

Finally, if W( C ij ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4vaiaacIcacaWGdbWaaSbaaSqaai aadMgacaWGQbaabeaakiaacMcaaaa@35F0@  is used for an anisotropic material then

σ ij = 1 J F ik W C pq C pq F jk = 1 J F ik W C pq δ pk F jq + F jp δ qk = 2 J F ik W C kl F jl MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaadQeaaaGaamOramaa BaaaleaacaWGPbGaam4AaaqabaGcdaWcaaqaaiabgkGi2kaadEfaae aacqGHciITcaWGdbWaaSbaaSqaaiaadchacaWGXbaabeaaaaGcdaWc aaqaaiabgkGi2kaadoeadaWgaaWcbaGaamiCaiaadghaaeqaaaGcba GaeyOaIyRaamOramaaBaaaleaacaWGQbGaam4AaaqabaaaaOGaeyyp a0ZaaSaaaeaacaaIXaaabaGaamOsaaaacaWGgbWaaSbaaSqaaiaadM gacaWGRbaabeaakmaalaaabaGaeyOaIyRaam4vaaqaaiabgkGi2kaa doeadaWgaaWcbaGaamiCaiaadghaaeqaaaaakmaabmaabaGaeqiTdq 2aaSbaaSqaaiaadchacaWGRbaabeaakiaadAeadaWgaaWcbaGaamOA aiaadghaaeqaaOGaey4kaSIaamOramaaBaaaleaacaWGQbGaamiCaa qabaGccqaH0oazdaWgaaWcbaGaamyCaiaadUgaaeqaaaGccaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacaaIYaaabaGaamOsaaaacaWGgbWaaS baaSqaaiaadMgacaWGRbaabeaakmaalaaabaGaeyOaIyRaam4vaaqa aiabgkGi2kaadoeadaWgaaWcbaGaam4AaiaadYgaaeqaaaaakiaadA eadaWgaaWcbaGaamOAaiaadYgaaeqaaaaa@7440@

 

 

 

3.5.4 A note on perfectly incompressible materials

 

The preceding formulas assume that the material has some (perhaps small) compressibility MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  that is to say, if you load it with hydrostatic pressure, its volume will change by a measurable amount.   Most rubbers strongly resist volume changes, and in hand calculations it is sometimes convenient to approximate them as perfectly incompressible.   The material model for incompressible materials is specified as follows:

 

· The deformation must satisfy J=1 to preserve volume.

 

· The strain energy density is therefore only a function of two invariants; furthermore, both sets of invariants defined above are identical.  We can use a strain energy density of the form U( I 1 , I 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiaacIcacaWGjbWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadMeadaWgaaWcbaGaaGOmaaqabaGccaGG Paaaaa@3742@ .

 

· Because you can apply any pressure to an incompressible solid without changing its shape, the stress cannot be uniquely determined from the strains.   Consequently, the stress-strain law only specifies the deviatoric stress σ ¯ ij = σ ij σ kk δ ij /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4WdmNbaebadaWgaaWcbaGaamyAai aadQgaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaa beaakiabgkHiTiabeo8aZnaaBaaaleaacaWGRbGaam4AaaqabaGccq aH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaai4laiaaiodaaaa@4398@ .  In problems involving quasi-static loading, the hydrostatic stress p= σ kk /3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamiCaiabg2da9iabeo8aZnaaBaaale aacaWGRbGaam4AaaqabaGccaGGVaGaaG4maaaa@3824@  can usually be calculated, by solving the equilibrium equations (together with appropriate boundary conditions).   Incompressible materials should not be used in a dynamic analysis, because the speed of elastic pressure waves is infinite.

 

· The formula for stress in terms of U( I 1 , I 2 ) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiaacIcacaWGjbWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadMeadaWgaaWcbaGaaGOmaaqabaGccaGG Paaaaa@3742@  has the form

σ ij =2 U I 1 + I 1 U I 2 B ij I 1 U I 1 +2 I 2 U I 2 δ ij 3 U I 2 B ik B kj +p δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9iaaikdadaWadaqaamaabmaabaWaaSaaaeaacqGH ciITcaWGvbaabaGaeyOaIyRaamysamaaBaaaleaacaaIXaaabeaaaa GccqGHRaWkcaWGjbWaaSbaaSqaaiaaigdaaeqaaOWaaSaaaeaacqGH ciITcaWGvbaabaGaeyOaIyRaamysamaaBaaaleaacaaIYaaabeaaaa aakiaawIcacaGLPaaacaWGcbWaaSbaaSqaaiaadMgacaWGQbaabeaa kiabgkHiTmaabmaabaGaamysamaaBaaaleaacaaIXaaabeaakmaala aabaGaeyOaIyRaamyvaaqaaiabgkGi2kaadMeadaWgaaWcbaGaaGym aaqabaaaaOGaey4kaSIaaGOmaiaadMeadaWgaaWcbaGaaGOmaaqaba GcdaWcaaqaaiabgkGi2kaadwfaaeaacqGHciITcaWGjbWaaSbaaSqa aiaaikdaaeqaaaaaaOGaayjkaiaawMcaamaalaaabaGaeqiTdq2aaS baaSqaaiaadMgacaWGQbaabeaaaOqaaiaaiodaaaGaeyOeI0YaaSaa aeaacqGHciITcaWGvbaabaGaeyOaIyRaamysamaaBaaaleaacaaIYa aabeaaaaGccaWGcbWaaSbaaSqaaiaadMgacaWGRbaabeaakiaadkea daWgaaWcbaGaam4AaiaadQgaaeqaaaGccaGLBbGaayzxaaGaey4kaS IaamiCaiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@72FB@

The hydrostatic stress p is an unknown variable, which must be calculated by solving the boundary value problem.

 

 

 

3.5.5 Specific forms of the strain energy density

 

· Generalized Neo-Hookean solid  (Adapted from Treloar 1948)

U ¯ = μ 1 2 ( I ¯ 1 3)+ K 1 2 (J1) 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyvayaaraGaeyypa0ZaaSaaaeaacq aH8oqBdaWgaaWcbaGaaGymaaqabaaakeaacaaIYaaaaiaacIcaceWG jbGbaebadaWgaaWcbaGaaGymaaqabaGccqGHsislcaaIZaGaaiykai abgUcaRmaalaaabaGaam4samaaBaaaleaacaaIXaaabeaaaOqaaiaa ikdaaaGaaiikaiaadQeacqGHsislcaaIXaGaaiykamaaCaaaleqaba GaaGOmaaaaaaa@434D@

where μ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaa aa@337D@  and K 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaaIXaaabeaaaa a@3297@  are material properties (for small deformations, μ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaa aa@337D@  and K 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaaIXaaabeaaaa a@3297@  are the shear modulus and bulk modulus of the solid, respectively). Elementary statistical mechanics treatments predict that μ 1 =NkT MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaamOtaiaadUgacaWGubaaaa@3729@ , where N is the number of polymer chains per unit volume, k is the Boltzmann constant, and T is temperature.  This is a rubber elasticity model, for rubbers with very limited compressibility, and should be used with K 1 >> μ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaaIXaaabeaaki abg6da+iabg6da+iabeY7aTnaaBaaaleaacaaIXaaabeaaaaa@374E@ .  The stress-strain relation follows as

σ ij = μ 1 J 5/3 B ij 1 3 B kk δ ij + K 1 J1 δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaeqiVd02aaSbaaSqaaiaaigdaaeqa aaGcbaGaamOsamaaCaaaleqabaGaaGynaiaac+cacaaIZaaaaaaakm aabmaabaGaamOqamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsisl daWcaaqaaiaaigdaaeaacaaIZaaaaiaadkeadaWgaaWcbaGaam4Aai aadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaOGa ayjkaiaawMcaaiabgUcaRiaadUeadaWgaaWcbaGaaGymaaqabaGcda qadaqaaiaadQeacqGHsislcaaIXaaacaGLOaGaayzkaaGaeqiTdq2a aSbaaSqaaiaadMgacaWGQbaabeaaaaa@5366@

The fully incompressible limit can be obtained by setting K 1 (J1)=p/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaaIXaaabeaaki aacIcacaWGkbGaeyOeI0IaaGymaiaacMcacqGH9aqpcaWGWbGaai4l aiaaiodaaaa@39DC@  in the stress-strain law.

 

· Generalized Mooney-Rivlin solid (Adapted from Mooney 1940)

U ¯ = μ 1 2 ( I ¯ 1 3)+ μ 2 2 ( I ¯ 2 3)+ K 1 2 (J1) 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyvayaaraGaeyypa0ZaaSaaaeaacq aH8oqBdaWgaaWcbaGaaGymaaqabaaakeaacaaIYaaaaiaacIcaceWG jbGbaebadaWgaaWcbaGaaGymaaqabaGccqGHsislcaaIZaGaaiykai abgUcaRmaalaaabaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaaGcbaGa aGOmaaaacaGGOaGabmysayaaraWaaSbaaSqaaiaaikdaaeqaaOGaey OeI0IaaG4maiaacMcacqGHRaWkdaWcaaqaaiaadUeadaWgaaWcbaGa aGymaaqabaaakeaacaaIYaaaaiaacIcacaWGkbGaeyOeI0IaaGymai aacMcadaahaaWcbeqaaiaaikdaaaaaaa@4C7E@

where μ 1 , μ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaO GaaiilaiabeY7aTnaaBaaaleaacaaIYaaabeaaaaa@36D5@  and K 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaaIXaaabeaaaa a@3297@  are material properties.  For small deformations, the shear modulus and bulk modulus of the solid are μ= μ 1 + μ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0Maeyypa0JaeqiVd02aaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaeqiVd02aaSbaaSqaaiaaikdaaeqa aaaa@39C3@  and K= K 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4saiabg2da9iaadUeadaWgaaWcba GaaGymaaqabaaaaa@346D@ .  This is a rubber elasticity model, and should be used with K 1 >> μ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaaIXaaabeaaki abg6da+iabg6da+iabeY7aTnaaBaaaleaacaaIXaaabeaaaaa@374E@ . The stress-strain relation follows as

σ ij = μ 1 J 5/3 B ij 1 3 B kk δ ij + μ 2 J 7/3 B kk B ij 1 3 [ B kk ] 2 δ ij B ik B kj + 1 3 B kn B nk δ ij + K 1 J1 δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaeqiVd02aaSbaaSqaaiaaigdaaeqa aaGcbaGaamOsamaaCaaaleqabaGaaGynaiaac+cacaaIZaaaaaaakm aabmaabaGaamOqamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsisl daWcaaqaaiaaigdaaeaacaaIZaaaaiaadkeadaWgaaWcbaGaam4Aai aadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaOGa ayjkaiaawMcaaiabgUcaRmaalaaabaGaeqiVd02aaSbaaSqaaiaaik daaeqaaaGcbaGaamOsamaaCaaaleqabaGaaG4naiaac+cacaaIZaaa aaaakmaabmaabaGaamOqamaaBaaaleaacaWGRbGaam4AaaqabaGcca WGcbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTmaalaaabaGa aGymaaqaaiaaiodaaaGaai4waiaadkeadaqhaaWcbaGaam4AaiaadU gaaeaaaaGccaGGDbWaaWbaaSqabeaacaaIYaaaaOGaeqiTdq2aaSba aSqaaiaadMgacaWGQbaabeaakiabgkHiTiaadkeadaWgaaWcbaGaam yAaiaadUgaaeqaaOGaamOqamaaBaaaleaacaWGRbGaamOAaaqabaGc cqGHRaWkdaWcaaqaaiaaigdaaeaacaaIZaaaaiaadkeadaWgaaWcba Gaam4Aaiaad6gaaeqaaOGaamOqamaaBaaaleaacaWGUbGaam4Aaaqa baGccqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaay zkaaGaey4kaSIaam4samaaBaaaleaacaaIXaaabeaakmaabmaabaGa amOsaiabgkHiTiaaigdaaiaawIcacaGLPaaacqaH0oazdaWgaaWcba GaamyAaiaadQgaaeqaaaaa@7FBB@

 

· Generalized polynomial rubber elasticity potential

U ¯ = i+j=1 N C ij ( I ¯ 1 3) i ( I ¯ 2 3) j + i=1 N K i 2 (J1) 2i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyvayaaraGaeyypa0ZaaabCaeaaca WGdbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGPbGaey4kaSIa amOAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGccaGGOaGabm ysayaaraWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaG4maiaacMca daahaaWcbeqaaiaadMgaaaGccaGGOaGabmysayaaraWaaSbaaSqaai aaikdaaeqaaOGaeyOeI0IaaG4maiaacMcadaahaaWcbeqaaiaadQga aaGccqGHRaWkdaaeWbqaamaalaaabaGaam4samaaBaaaleaacaWGPb aabeaaaOqaaiaaikdaaaGaaiikaiaadQeacqGHsislcaaIXaGaaiyk amaaCaaaleqabaGaaGOmaiaadMgaaaaabaGaamyAaiabg2da9iaaig daaeaacaWGobaaniabggHiLdaaaa@583F@

where C ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B1@  and K i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaWGPbaabeaaaa a@32CA@  are material properties.  For small strains the shear modulus and bulk modulus follow as μ=2( C 01 + C 10 ),K= K 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0Maeyypa0JaaGOmaiaacIcaca WGdbWaaSbaaSqaaiaaicdacaaIXaaabeaakiabgUcaRiaadoeadaWg aaWcbaGaaGymaiaaicdaaeqaaOGaaiykaiaacYcacaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4saiabg2da9iaadUea daWgaaWcbaGaaGymaaqabaaaaa@4A83@ . This model is implemented in many finite element codes.  Both the neo-Hookean solid and the Mooney-Rivlin solid are special cases of the law (with N=1 and appropriate choices of C ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAaa qabaaaaa@33B1@  ).  Values of N>2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOtaiabg6da+iaaikdaaaa@3377@  are rarely used, because it is difficult to fit such a large number of material properties to experimental data. 

 

· Generalized Gent model

                                                  U( I ¯ 1 ,J)= μ 2 J m log 1 I ¯ 1 3 J m + K 1 2 (J1) 2 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiaacIcaceWGjbGbaebadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamOsaiaacMcacqGH9aqpcqGHsisl daWcaaqaaiabeY7aTbqaaiaaikdaaaGaamOsamaaBaaaleaacaWGTb aabeaakiGacYgacaGGVbGaai4zamaabmaabaGaaGymaiabgkHiTmaa laaabaGabmysayaaraWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaG 4maaqaaiaadQeadaWgaaWcbaGaamyBaaqabaaaaaGccaGLOaGaayzk aaGaey4kaSYaaSaaaeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaaGcba GaaGOmaaaacaGGOaGaamOsaiabgkHiTiaaigdacaGGPaWaaWbaaSqa beaacaaIYaaaaaaa@5085@

where μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  and J m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaWGTbaabeaaaa a@32CD@  are material properties.   The stress-strain law is

σ ij = μ J m J J 2/3 ( J m +3) B kk B ij 1 3 B kk δ ij + K 1 J1 δ ij MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaeqiVd0MaamOsamaaBaaaleaacaWG TbaabeaaaOqaaiaadQeadaqadaqaaiaadQeadaahaaWcbeqaaiaaik dacaGGVaGaaG4maaaakiaacIcacaWGkbWaaSbaaSqaaiaad2gaaeqa aOGaey4kaSIaaG4maiaacMcacqGHsislcaWGcbWaaSbaaSqaaiaadU gacaWGRbaabeaaaOGaayjkaiaawMcaaaaadaqadaqaaiaadkeadaWg aaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaaba GaaG4maaaacaWGcbWaaSbaaSqaaiaadUgacaWGRbaabeaakiabes7a KnaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGHRa WkcaWGlbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGkbGaeyOe I0IaaGymaaGaayjkaiaawMcaaiabes7aKnaaBaaaleaacaWGPbGaam OAaaqabaaaaa@5F79@

Since σ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabgkziUkabg6HiLcaa@3814@  as B kk / J 2/3 J m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOqamaaBaaaleaacaWGRbGaam4Aaa qabaGccaGGVaGaamOsamaaCaaaleqabaGaaGOmaiaac+cacaaIZaaa aOGaeyOKH4QaamOsamaaBaaaleaacaWGTbaabeaaaaa@3B7C@ , the Gent material has a finite stretchability.   It reduces to the Neo-Hookean material in the limit J m MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOsamaaBaaaleaacaWGTbaabeaaki abgkziUkabg6HiLcaa@3635@ .

 

 

· Ogden model (adapted from Ogden, 1972)

U ˜ = i=1 N μ i α i ( λ ¯ 1 α i + λ ¯ 2 α i + λ ¯ 3 α i 3)+ K 1 2 (J1) 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyvayaaiaGaeyypa0ZaaabCaeaada WcaaqaaiabeY7aTnaaBaaaleaacaWGPbaabeaaaOqaaiabeg7aHnaa BaaaleaacaWGPbaabeaaaaGccaGGOaGafq4UdWMbaebadaqhaaWcba GaaGymaaqaaiabeg7aHnaaBaaameaacaWGPbaabeaaaaaaleaacaWG PbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgUcaRiqbeU 7aSzaaraWaa0baaSqaaiaaikdaaeaacqaHXoqydaWgaaadbaGaamyA aaqabaaaaOGaey4kaSIafq4UdWMbaebadaqhaaWcbaGaaG4maaqaai abeg7aHnaaBaaameaacaWGPbaabeaaaaGccqGHsislcaaIZaGaaiyk aiabgUcaRmaalaaabaGaam4samaaBaaaleaacaaIXaaabeaaaOqaai aaikdaaaGaaiikaiaadQeacqGHsislcaaIXaGaaiykamaaCaaaleqa baGaaGOmaaaaaaa@5B9A@

where λ ¯ i = λ i / J 1/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGafq4UdWMbaebadaWgaaWcbaGaamyAaa qabaGccqGH9aqpcqaH7oaBdaWgaaWcbaGaamyAaaqabaGccaGGVaGa amOsamaaCaaaleqabaGaaGymaiaac+cacaaIZaaaaaaa@3B88@  , and μ i , α i ,K MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaadMgaaeqaaO Gaaiilaiabeg7aHnaaBaaaleaacaWGPbaabeaakiaacYcacaWGlbaa aa@38AD@  are material properties.  For small strains the shear modulus and bulk modulus follow as μ= i=1 N α i 2 μ i /2,K= K 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0Maeyypa0ZaaabmaeaacqaHXo qydaqhaaWcbaGaamyAaaqaaiaaikdaaaGccqaH8oqBdaWgaaWcbaGa amyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGobaaniabgg HiLdGccaGGVaGaaGOmaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8Uaam4saiabg2da9iaadUeadaWgaaWcbaGaaG ymaaqabaaaaa@4FE8@ . This is a rubber elasticity model, and is intended to be used with K 1 >> μ i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaaIXaaabeaaki abg6da+iabg6da+iabeY7aTnaaBaaaleaacaWGPbaabeaaaaa@3781@ .  The stress can be computed using the formulas in 3.4.3, but are too lengthy to write out in full here.

 

· Arruda-Boyce 8 chain model (Adapted from Arruda and Boyce, 1992)

U ¯ =μ 1 2 ( I ¯ 1 3)+ 1 20 β 2 ( I ¯ 1 2 9)+ 11 1050 β 4 ( I ¯ 1 3 27)+... + K 2 J1 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyvayaaraGaeyypa0JaeqiVd02aai WaaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcaceWGjbGbaeba daqhaaWcbaGaaGymaaqaaaaakiabgkHiTiaaiodacaGGPaGaey4kaS YaaSaaaeaacaaIXaaabaGaaGOmaiaaicdacqaHYoGydaahaaWcbeqa aiaaikdaaaaaaOGaaiikaiqadMeagaqeamaaDaaaleaacaaIXaaaba GaaGOmaaaakiabgkHiTiaaiMdacaGGPaGaey4kaSYaaSaaaeaacaaI XaGaaGymaaqaaiaaigdacaaIWaGaaGynaiaaicdacqaHYoGydaahaa WcbeqaaiaaisdaaaaaaOGaaiikaiqadMeagaqeamaaDaaaleaacaaI XaaabaGaaG4maaaakiabgkHiTiaaikdacaaI3aGaaiykaiabgUcaRi aac6cacaGGUaGaaiOlaaGaay5Eaiaaw2haaiabgUcaRmaalaaabaGa am4saaqaaiaaikdaaaWaaeWaaeaacaWGkbGaeyOeI0IaaGymaaGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@6118@

where μ,β,K MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0Maaiilaiabek7aIjaacYcaca WGlbaaaa@3667@  are material properties.  For small deformations μ,K MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0MaaiilaiaadUeaaaa@3416@  are the shear and bulk modulus, respectively. This is a rubber elasticity model, so K>>μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4saiabg6da+iabg6da+iabeY7aTb aa@3576@ .    The potential was derived by calculating the entropy of a simple network of long-chain molecules, and the series is the result of a Taylor expansion of an inverse Langevin function.  The reference provided lists more terms if you need them.  The stress-strain law is

σ ij = μ J 5/3 1+ B kk 5 J 2/3 β 2 + 33 ( B kk ) 2 525 β 4 J 4/3 +... B ij B kk 3 δ ij +K(J1) δ ij MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaeqiVd0gabaGaamOsamaaCaaaleqa baGaaGynaiaac+cacaaIZaaaaaaakmaabmaabaGaaGymaiabgUcaRm aalaaabaGaamOqamaaBaaaleaacaWGRbGaam4AaaqabaaakeaacaaI 1aGaamOsamaaCaaaleqabaGaaGOmaiaac+cacaaIZaaaaOGaeqOSdi 2aaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaaG4maiaa iodacaGGOaGaamOqamaaBaaaleaacaWGRbGaam4AaaqabaGccaGGPa WaaWbaaSqabeaacaaIYaaaaaGcbaGaaGynaiaaikdacaaI1aGaeqOS di2aaWbaaSqabeaacaaI0aaaaOGaamOsamaaCaaaleqabaGaaGinai aac+cacaaIZaaaaaaakiabgUcaRiaac6cacaGGUaGaaiOlaaGaayjk aiaawMcaamaabmaabaGaamOqamaaBaaaleaacaWGPbGaamOAaaqaba GccqGHsisldaWcaaqaaiaadkeadaWgaaWcbaGaam4AaiaadUgaaeqa aaGcbaGaaG4maaaacqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaa GccaGLOaGaayzkaaGaey4kaSIaam4saiaacIcacaWGkbGaeyOeI0Ia aGymaiaacMcacqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaaa@6FC2@

 

· Ogden-Storakers hyperelastic foam (Storakers, 1986)

U ˜ = i=1 N μ i α i λ 1 α i + λ 2 α i + λ 3 α i 3+ 1 β i ( J α i β i 1) MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGabmyvayaaiaGaeyypa0ZaaabCaeaada WcaaqaaiabeY7aTnaaBaaaleaacaWGPbaabeaaaOqaaiabeg7aHnaa BaaaleaacaWGPbaabeaaaaGcdaqadaqaaiabeU7aSnaaDaaaleaaca aIXaaabaGaeqySde2aaSbaaWqaaiaadMgaaeqaaaaakiabgUcaRiab eU7aSnaaDaaaleaacaaIYaaabaGaeqySde2aaSbaaWqaaiaadMgaae qaaaaakiabgUcaRiabeU7aSnaaDaaaleaacaaIZaaabaGaeqySde2a aSbaaWqaaiaadMgaaeqaaaaakiabgkHiTiaaiodacqGHRaWkdaWcaa qaaiaaigdaaeaacqaHYoGydaWgaaWcbaGaamyAaaqabaaaaOGaaiik aiaadQeadaahaaWcbeqaaiabgkHiTiabeg7aHnaaBaaameaacaWGPb aabeaaliabek7aInaaBaaameaacaWGPbaabeaaaaGccqGHsislcaaI XaGaaiykaaGaayjkaiaawMcaaaWcbaGaamyAaiabg2da9iaaigdaae aacaWGobaaniabggHiLdaaaa@6240@

where μ i , α i , β i MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd02aaSbaaSqaaiaadMgaaeqaaO Gaaiilaiabeg7aHnaaBaaaleaacaWGPbaabeaakiaacYcacqaHYoGy daWgaaWcbaGaamyAaaqabaaaaa@3A98@  are material properties.   For small strains the shear modulus and bulk modulus follow as μ= i=1 N α i 2 μ i /2 ,K= i=1 N α i 2 μ i β i +1/3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0Maeyypa0ZaaabmaeaacqaHXo qydaqhaaWcbaGaamyAaaqaaiaaikdaaaGccqaH8oqBdaWgaaWcbaGa amyAaaqabaGccaGGVaGaaGOmaaWcbaGaamyAaiabg2da9iaaigdaae aacaWGobaaniabggHiLdGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaadUeacqGH9aqpdaaeWaqaaiabeg7aHn aaDaaaleaacaWGPbaabaGaaGOmaaaakiabeY7aTnaaBaaaleaacaWG PbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIu oakmaabmaabaGaeqOSdi2aaSbaaSqaaiaadMgaaeqaaOGaey4kaSIa aGymaiaac+cacaaIZaaacaGLOaGaayzkaaaaaa@6174@ .   This is a foam model, and can model highly compressible materials.  The shear and compression responses are coupled.

 

· Blatz-Ko foam rubber (Blatz and Ko, 1962)

                                                            U( I 1 , I 2 , I 3 )= μ 2 I 2 I 3 +2 I 3 5 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamyvaiaacIcacaWGjbWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadMeadaWgaaWcbaGaaGOmaaqabaGccaGG SaGaamysamaaBaaaleaacaaIZaaabeaakiaacMcacqGH9aqpdaWcaa qaaiabeY7aTbqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiaadMeadaWg aaWcbaGaaGOmaaqabaaakeaacaWGjbWaaSbaaSqaaiaaiodaaeqaaa aakiabgUcaRiaaikdadaGcaaqaaiaadMeadaWgaaWcbaGaaG4maaqa baaabeaakiabgkHiTiaaiwdaaiaawIcacaGLPaaaaaa@476F@

where μ MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiVd0gaaa@3296@  is a material parameter corresponding to the shear modulus at infinitesimal strains. The corresponding Poisson’s ratio for such a material is 0.25.  The general stress-strain law is

σ ij = μ I 3 3/2 I 3 3/2 I 2 δ ij + I 1 B ij B ik B kj MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaeqiVd0gabaGaamysamaaDaaaleaa caaIZaaabaGaaG4maiaac+cacaaIYaaaaaaakmaabmaabaWaaeWaae aacaWGjbWaa0baaSqaaiaaiodaaeaacaaIZaGaai4laiaaikdaaaGc cqGHsislcaWGjbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaa GaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaakiabgUcaRiaadMea daWgaaWcbaGaaGymaaqabaGccaWGcbWaaSbaaSqaaiaadMgacaWGQb aabeaakiabgkHiTiaadkeadaWgaaWcbaGaamyAaiaadUgaaeqaaOGa amOqamaaBaaaleaacaWGRbGaamOAaaqabaaakiaawIcacaGLPaaaaa a@54F4@

 

 

 

3.5.6 Calibrating nonlinear elasticity models

 

To use any of these constitutive relations, you will need to determine values for the material constants.  In some cases this is quite simple (the incompressible neo-Hookean material only has 1 constant!); for models like the generalized polynomial or Ogden’s it is considerably more involved. 

 

Conceptually, however, the procedure is straightforward.  You can perform various types of test on a sample of the material, including simple tension, pure shear, equibiaxial tension, or volumetric compression. It is straightforward to calculate the predicted stress-strain behavior for the specimen for each constitutive law.  The parameters can then be chosen to give the best fit to experimental behavior. 

 

Here are some guidelines on how best to do this:

 

1. When modeling the behavior of rubber under ambient pressure, you can usually assume that the material is nearly incompressible, and don’t need to characterize response to volumetric compression in detail.  For the rubber elasticity models listed above, you can take K 1 10 5 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4samaaBaaaleaacaaIXaaabeaaki abgIKi7kaaigdacaaIWaWaaWbaaSqabeaacaaI1aaaaaaa@36B3@  MPa. To fit the remaining parameters, you can assume the material is perfectly incompressible.

 

2. If rubber is subjected to large hydrostatic stress (>100 MPa) its volumetric and shear responses are strongly coupled. Compression increases the shear modulus, and high enough pressure can even induce a glass transition (see, e.g. D.L. Quested, K.D. Pae, J.L. Sheinbein and B.A. Newman, (1981)).  To account for this, you would have to use one of the foam models: in the rubber models the volumetric and shear responses are decoupled. You would also have to determine the material constants by testing the material under combined hydrostatic and shear loading. 

 

3. For the simpler material models, (e.g. the neo-Hookean solid, the Mooney-Rivlin material, or the Arruda-Boyce model, which contain only two material parameters in addition to the bulk modulus) you can estimate material parameters by fitting to the results of a uniaxial tension test.  There are various ways to actually do the fit MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@  you could match the small-strain shear modulus to experiment, and then select the remaining parameter to fit the stress-strain curve at a larger stretch.  Least-squared fits are also often used.  However, models calibrated in this way do not always predict material behavior under multiaxial loading accurately.

 

4. A more accurate description of material response to multiaxial loading can be obtained by fitting the material parameters to multiaxial tests.  To help in this exercise, the nominal stress (i.e. force/unit undeformed area) MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@ v- extension predicted by several constitutive laws are listed in the table below (assuming perfectly incompressible behavior, as suggested in item 1.). Specimen dimensions are illustrated in the figure.

 

 

 

 

Uniaxial tension

Biaxial tension

Pure shear

Invariants

l 1 / L 1 =λ l 2 / L 2 = l 3 / L 3 = λ 1/2 I 1 = λ 2 +2 λ 1 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGSbWaaSbaaSqaaiaaigdaae qaaOGaai4laiaadYeadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH 7oaBaeaacaWGSbWaaSbaaSqaaiaaikdaaeqaaOGaai4laiaadYeada WgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGSbWaaSbaaSqaaiaaioda aeqaaOGaai4laiaadYeadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcq aH7oaBdaahaaWcbeqaaiabgkHiTiaaigdacaGGVaGaaGOmaaaaaOqa aiaadMeadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH7oaBdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeq4UdW2aaWbaaSqabeaa cqGHsislcaaIXaaaaaaaaa@524E@

l 1 / L 1 = l 2 / L 2 =λ l 3 / L 3 = λ 2 I 1 =2 λ 2 + λ 4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGSbWaaSbaaSqaaiaaigdaae qaaOGaai4laiaadYeadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWG SbWaaSbaaSqaaiaaikdaaeqaaOGaai4laiaadYeadaWgaaWcbaGaaG OmaaqabaGccqGH9aqpcqaH7oaBaeaacaWGSbWaaSbaaSqaaiaaioda aeqaaOGaai4laiaadYeadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcq aH7oaBdaahaaWcbeqaaiabgkHiTiaaikdaaaaakeaacaWGjbWaaSba aSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaiabeU7aSnaaCaaaleqaba GaaGOmaaaakiabgUcaRiabeU7aSnaaCaaaleqabaGaeyOeI0IaaGin aaaaaaaa@50E3@

l 1 / L 1 =λ l 2 / L 2 = λ 1 l 3 / L 3 =1 I 1 =1+ λ 2 + λ 2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGSbWaaSbaaSqaaiaaigdaae qaaOGaai4laiaadYeadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH 7oaBcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caWGSbWaaSbaaSqaaiaaikdaaeqaaOGaai4laiaadYea daWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqaH7oaBdaahaaWcbeqaai abgkHiTiaaigdaaaaakeaacaWGSbWaaSbaaSqaaiaaiodaaeqaaOGa ai4laiaadYeadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaaIXaaaba GaamysamaaBaaaleaacaaIXaaabeaakiabg2da9iaaigdacqGHRaWk cqaH7oaBdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH7oaBdaahaa WcbeqaaiabgkHiTiaaikdaaaaaaaa@605F@

Neo-Hookean

S 1 = μ 1 λ λ 2 S 2 = S 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaeqiVd02aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaa cqaH7oaBcqGHsislcqaH7oaBdaahaaWcbeqaaiabgkHiTiaaikdaaa aakiaawIcacaGLPaaaaeaacaWGtbWaaSbaaSqaaiaaikdaaeqaaOGa eyypa0Jaam4uamaaBaaaleaacaaIZaaabeaakiabg2da9iaaicdaaa aa@4476@

S 1 = S 2 = μ 1 λ λ 5 S 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0Jaam4uamaaBaaaleaacaaIYaaabeaakiabg2da9iab eY7aTnaaBaaaleaacaaIXaaabeaakmaabmaabaGaeq4UdWMaeyOeI0 Iaeq4UdW2aaWbaaSqabeaacqGHsislcaaI1aaaaaGccaGLOaGaayzk aaaabaGaam4uamaaBaaaleaacaaIZaaabeaakiabg2da9iaaicdaaa aa@4479@

S 1 = μ 1 λ λ 1 S 2 = μ 1 λ λ 1 S 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaeqiVd02aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaa cqaH7oaBcqGHsislcqaH7oaBdaahaaWcbeqaaiabgkHiTiaaigdaaa aakiaawIcacaGLPaaaaeaacaWGtbWaaSbaaSqaaiaaikdaaeqaaOGa eyypa0JaeyOeI0IaeqiVd02aaSbaaSqaaiaaigdaaeqaaOWaaeWaae aacqaH7oaBcqGHsislcqaH7oaBdaahaaWcbeqaaiabgkHiTiaaigda aaaakiaawIcacaGLPaaaaeaacaWGtbWaaSbaaSqaaiaaiodaaeqaaO Gaeyypa0JaaGimaaaaaa@4FC7@

Mooney MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@ Rivlin

S 1 = μ 1 λ λ 2 + μ 2 (1 λ 3 ) S 2 = S 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0JaeqiVd02aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaa cqaH7oaBcqGHsislcqaH7oaBdaahaaWcbeqaaiabgkHiTiaaikdaaa aakiaawIcacaGLPaaacaaMc8oabaGaaGPaVlaaykW7caaMc8UaaGPa VlabgUcaRiabeY7aTnaaBaaaleaacaaIYaaabeaakiaacIcacaaIXa GaeyOeI0Iaeq4UdW2aaWbaaSqabeaacqGHsislcaaIZaaaaOGaaiyk aaqaaiaadofadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGtbWaaS baaSqaaiaaiodaaeqaaOGaeyypa0JaaGimaaaaaa@564E@

S 1 = S 2 = μ 1 λ λ 5 + μ 2 ( λ 3 λ 3 ) S 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0Jaam4uamaaBaaaleaacaaIYaaabeaakiabg2da9iab eY7aTnaaBaaaleaacaaIXaaabeaakmaabmaabaGaeq4UdWMaeyOeI0 Iaeq4UdW2aaWbaaSqabeaacqGHsislcaaI1aaaaaGccaGLOaGaayzk aaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlabgUcaRiabeY7aTnaaBaaaleaacaaIYaaabeaakiaacIcacq aH7oaBdaahaaWcbeqaaiaaiodaaaGccqGHsislcqaH7oaBdaahaaWc beqaaiabgkHiTiaaiodaaaGccaGGPaaabaGaam4uamaaBaaaleaaca aIZaaabeaakiabg2da9iaaicdaaaaa@6937@

S 1 = λ 2 μ 1 + μ 2 λ 1 λ 3 S 2 = μ 1 + λ 2 μ 2 λ λ 1 S 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaeWaaeaacqaH7oaBdaahaaWcbeqaaiaaikdaaaGc cqaH8oqBdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH8oqBdaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaadaqadaqaaiabeU7aSnaa CaaaleqabaGaeyOeI0IaaGymaaaakiabgkHiTiabeU7aSnaaCaaale qabaGaeyOeI0IaaG4maaaaaOGaayjkaiaawMcaaaqaaiaadofadaWg aaWcbaGaaGOmaaqabaGccqGH9aqpcqGHsisldaqadaqaaiabeY7aTn aaBaaaleaacaaIXaaabeaakiabgUcaRiabeU7aSnaaCaaaleqabaGa aGOmaaaakiabeY7aTnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawM caamaabmaabaGaeq4UdWMaeyOeI0Iaeq4UdW2aaWbaaSqabeaacqGH sislcaaIXaaaaaGccaGLOaGaayzkaaaabaGaam4uamaaBaaaleaaca aIZaaabeaakiabg2da9iaaicdaaaaa@611C@

Arruda MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=ui pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaacbaqcLbwaqaaaaaaaaaWdbiaa=nbiaa a@326C@ Boyce

S 1 =C λ λ 2 S 2 = S 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0Jaam4qamaabmaabaGaeq4UdWMaeyOeI0Iaeq4UdW2a aWbaaSqabeaacqGHsislcaaIYaaaaaGccaGLOaGaayzkaaaabaGaam 4uamaaBaaaleaacaaIYaaabeaakiabg2da9iaadofadaWgaaWcbaGa aG4maaqabaGccqGH9aqpcaaIWaaaaaa@4297@

S 1 = S 2 =C λ λ 5 S 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0Jaam4uamaaBaaaleaacaaIYaaabeaakiabg2da9iaa doeadaqadaqaaiabeU7aSjabgkHiTiabeU7aSnaaCaaaleqabaGaey OeI0IaaGynaaaaaOGaayjkaiaawMcaaaqaaiaadofadaWgaaWcbaGa aG4maaqabaGccqGH9aqpcaaIWaaaaaa@429A@

S 1 =C λ λ 1 S 2 =C λ λ 1 S 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0Jaam4qamaabmaabaGaeq4UdWMaeyOeI0Iaeq4UdW2a aWbaaSqabeaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaaabaGaam 4uamaaBaaaleaacaaIYaaabeaakiabg2da9iabgkHiTiaadoeadaqa daqaaiabeU7aSjabgkHiTiabeU7aSnaaCaaaleqabaGaeyOeI0IaaG ymaaaaaOGaayjkaiaawMcaaaqaaiaadofadaWgaaWcbaGaaG4maaqa baGccqGH9aqpcaaIWaaaaaa@4C09@

C=μ 1+ I 1 5 β 2 + 33 I 1 2 525 β 4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qaiabg2da9iabeY7aTnaabmaaba GaaGymaiabgUcaRmaalaaabaGaamysamaaBaaaleaacaaIXaaabeaa aOqaaiaaiwdacqaHYoGydaahaaWcbeqaaiaaikdaaaaaaOGaey4kaS YaaSaaaeaacaaIZaGaaG4maiaadMeadaqhaaWcbaGaaGymaaqaaiaa ikdaaaaakeaacaaI1aGaaGOmaiaaiwdacqaHYoGydaahaaWcbeqaai aaisdaaaaaaaGccaGLOaGaayzkaaaaaa@4664@

Ogden

S 1 = n μ n ( λ α n λ α n /2 )/λ S 2 = S 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaabuaeaacqaH8oqBdaWgaaWcbaGaamOBaaqabaGc caGGOaGaeq4UdW2aaWbaaSqabeaacqaHXoqydaWgaaadbaGaamOBaa qabaaaaOGaeyOeI0Iaeq4UdW2aaWbaaSqabeaacqGHsislcqaHXoqy daWgaaadbaGaamOBaaqabaWccaGGVaGaaGOmaaaakiaacMcacaGGVa Gaeq4UdWgaleaacaWGUbaabeqdcqGHris5aaGcbaGaam4uamaaBaaa leaacaaIYaaabeaakiabg2da9iaadofadaWgaaWcbaGaaG4maaqaba GccqGH9aqpcaaIWaaaaaa@5078@

S 1 = n μ n ( λ α n λ 2 α n )/λ S 2 = n μ n ( λ α n λ 2 α n )/λ S 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaabuaeaacqaH8oqBdaWgaaWcbaGaamOBaaqabaGc caGGOaGaeq4UdW2aaWbaaSqabeaacqaHXoqydaWgaaadbaGaamOBaa qabaaaaOGaeyOeI0Iaeq4UdW2aaWbaaSqabeaacqGHsislcaaIYaGa eqySde2aaSbaaWqaaiaad6gaaeqaaaaakiaacMcacaGGVaGaeq4UdW galeaacaWGUbaabeqdcqGHris5aaGcbaGaam4uamaaBaaaleaacaaI Yaaabeaakiabg2da9maaqafabaGaeqiVd02aaSbaaSqaaiaad6gaae qaaOGaaiikaiabeU7aSnaaCaaaleqabaGaeqySde2aaSbaaWqaaiaa d6gaaeqaaaaakiabgkHiTiabeU7aSnaaCaaaleqabaGaeyOeI0IaaG Omaiabeg7aHnaaBaaameaacaWGUbaabeaaaaGccaGGPaGaai4laiab eU7aSbWcbaGaamOBaaqab0GaeyyeIuoaaOqaaiaadofadaWgaaWcba GaaG4maaqabaGccqGH9aqpcaaIWaaaaaa@6564@

S 1 = n μ n ( λ α n 1)/λ S 2 = n λ μ n ( λ α n 1) S 3 =0 MathType@MTEF@5@5@+= feaahKart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGceaqabeaacaWGtbWaaSbaaSqaaiaaigdaae qaaOGaeyypa0ZaaabuaeaacqaH8oqBdaWgaaWcbaGaamOBaaqabaGc caGGOaGaeq4UdW2aaWbaaSqabeaacqaHXoqydaWgaaadbaGaamOBaa qabaaaaOGaeyOeI0IaaGymaiaacMcacaGGVaGaeq4UdWgaleaacaWG UbaabeqdcqGHris5aaGcbaGaam4uamaaBaaaleaacaaIYaaabeaaki abg2da9maaqafabaGaeq4UdWMaeqiVd02aaSbaaSqaaiaad6gaaeqa aOGaaiikaiabeU7aSnaaCaaaleqabaGaeyOeI0IaeqySde2aaSbaaW qaaiaad6gaaeqaaaaakiabgkHiTiaaigdacaGGPaaaleaacaWGUbaa beqdcqGHris5aaGcbaGaam4uamaaBaaaleaacaaIZaaabeaakiabg2 da9iaaicdaaaaa@5A6D@

 

 

 

 

3.5.7 Representative values of material properties for rubbers

 

The properties of rubber are strongly sensitive to its molecular structure, and for accurate predictions you will need to obtain experimental data for the particular material you plan to use.    As a rough guide, the experimental data of Treloar (1944) for the behavior of vulcanized rubber under uniaxial tension, biaxial tension, and pure shear is shown in the figure. The solid lines in the figure show the predictions of the Ogden model (which gives the best fit to the data).

 

Material parameters fit to this data for several constitutive laws are listed in the table below.

 

 

Neo-Hookean

μ 1 =0.4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTnaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdacaGGUaGaaGinaaaa@3641@  MNm-2

Mooney-Rivlin

μ 1 =0.39 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTnaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdacaGGUaGaaG4maiaaiMdaaaa@3703@   MNm-2 μ 2 =0.015 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTnaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdacaGGUaGaaGimaiaaigdacaaI1aaaaa@37B8@  MNm-2

Arruda-Boyce

μ 1 =0.4 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTnaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdacaGGUaGaaGinaaaa@3641@   MNm-2, β=10 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aIjabg2da9iaaigdacaaIWaaaaa@3486@

Ogden

μ 1 =0.62 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTnaaBaaaleaacaaIXaaabeaaki abg2da9iaaicdacaGGUaGaaGOnaiaaikdaaaa@36FF@  MNm-2, α 1 =1.3 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg7aHnaaBaaaleaacaaIXaaabeaaki abg2da9iaaigdacaGGUaGaaG4maaaa@362A@

μ 2 =0.00118 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTnaaBaaaleaacaaIYaaabeaaki abg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIXaGaaGymaiaaiIda aaa@3930@  MNm-2, α 2 =5 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg7aHnaaBaaaleaacaaIYaaabeaaki abg2da9iaaiwdaaaa@34C0@

μ 3 =0.00981 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTnaaBaaaleaacaaIZaaabeaaki abg2da9iabgkHiTiaaicdacaGGUaGaaGimaiaaicdacaaI5aGaaGio aiaaigdaaaa@3A26@  MNm-2, α 3 =2 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg7aHnaaBaaaleaacaaIZaaabeaaki abg2da9iabgkHiTiaaikdaaaa@35AB@