Problems for Chapter 6

 

Analytical Techniques and Solutions for Plastic Solids

 

 

 

6.2.  Bounding Theorems

 

 

6.2.1.      The figure shows a pressurized cylindrical cavity.  The solid has yield stress in shear k.  The objective of this problem is to calculate an upper bound to the pressure required to cause plastic collapse in the cylinder

6.2.1.1.            Take a volume preserving radial distribution of velocity as the collapse mechanism.  Calculate the strain rate associated with the collapse mechanism

6.2.1.2.            Apply the upper bound theorem to estimate the internal pressure p at collapse.  Compare the result with the exact solution

 

 

 

6.2.2.      The figure shows a proposed collapse mechanism for indentation of a rigid-plastic solid.  Each triangle slides as a rigid block, with velocity discontinuities across the edges of the triangles.

6.2.2.1.            Assume that triangle A moves vertically downwards.  Write down the velocity of triangles B and C

6.2.2.2.            Hence, calculate the total internal plastic dissipation, and obtain an upper bound to the force P

6.2.2.3.            Select the angle θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeI7aXbaa@321E@  that minimizes the collapse load.

 

 

 

 

6.2.3.      The figure shows a kinematically admissible velocity field for an extrusion process.   The velocity of the solid is uniform in each sector, with velocity discontinuities across each line.   The solid has shear yield stress k

6.2.3.1.            Assume the ram EF moves to the left at constant speed V. Calculate the velocity of the solid in each of the three separate regions of the solid, and deduce the magnitude of the velocity discontinuity between neighboring regions

6.2.3.2.            Hence, calculate the total plastic dissipation and obtain an upper bound to the extrusion force P per unit out-of-plane distance

6.2.3.3.            Select the angle θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeI7aXbaa@321E@  that gives the least upper bound.

 

 

 

 

6.2.4.      The figure shows a kinematically admissible velocity field for an extrusion process.   Material particles in the annular region ABCD move along radial lines.  There are velocity discontinuities across the arcs BC and AD. 

6.2.4.1.            Assume the ram EF moves to the left at constant speed V.  Use flow continuity to write down the radial velocity of material particles just inside the arc AD.

6.2.4.2.            Use the fact that the solid is incompressible to calculate the velocity distribution in ABCD

6.2.4.3.            Calculate the plastic dissipation, and hence obtain an upper bound to the force P.

 

 

 

 

 

6.2.5.      The purpose of this problem is to extend the upper bound theorem to pressure-dependent (frictional) materials.   Consider, in particular, a solid with a yield criterion and plastic flow rule given by

f( σ ij )= σ e + μ 2 σ kk Y=0 ε ˙ ij p = ε ˙ e 1+ μ 2 /2 f σ ij = ε ˙ e 1+ μ 2 /2 ( 3 S ij 2 σ e + μ 2 δ ij ) S ij = σ ij ( σ kk δ ij )/3 σ e = 3 S ij S ij /2 ε ˙ e = 2 ε ˙ ij p ε ˙ ij p /3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamOzaiaacIcacqaHdpWCdaWgaa WcbaGaamyAaiaadQgaaeqaaOGaaiykaiabg2da9iabeo8aZnaaBaaa leaacaWGLbaabeaakiabgUcaRmaalaaabaGaeqiVd0gabaGaaGOmaa aacqaHdpWCdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeyOeI0Iaamyw aiabg2da9iaaicdaaeaacuaH1oqzgaGaamaaDaaaleaacaWGPbGaam OAaaqaaiaadchaaaGccqGH9aqpdaWcaaqaaiqbew7aLzaacaWaaSba aSqaaiaadwgaaeqaaaGcbaWaaOaaaeaacaaIXaGaey4kaSIaeqiVd0 2aaWbaaSqabeaacaaIYaaaaOGaai4laiaaikdaaSqabaaaaOWaaSaa aeaacqGHciITcaWGMbaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaaaaGccqGH9aqpdaWcaaqaaiqbew7aLzaacaWaaSba aSqaaiaadwgaaeqaaaGcbaWaaOaaaeaacaaIXaGaey4kaSIaeqiVd0 2aaWbaaSqabeaacaaIYaaaaOGaai4laiaaikdaaSqabaaaaOWaaeWa aeaadaWcaaqaaiaaiodacaWGtbWaaSbaaSqaaiaadMgacaWGQbaabe aaaOqaaiabgkdaYiabeo8aZnaaBaaaleaacaWGLbaabeaaaaGccqGH RaWkdaWcaaqaaiabeY7aTbqaaiaaikdaaaGaeqiTdq2aaSbaaSqaai aadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaqaaiaadofadaWgaaWc baGaamyAaiaadQgaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadM gacaWGQbaabeaakiabgkHiTiaacIcacqaHdpWCdaWgaaWcbaGaam4A aiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaki aacMcacaGGVaGaaG4maiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaam yzaaqabaGccqGH9aqpdaGcaaqaaiaaiodacaWGtbWaaSbaaSqaaiaa dMgacaWGQbaabeaakiaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaO Gaai4laiaaikdaaSqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cuaH1oqzgaGaamaaBaaaleaacaWGLbaabeaakiabg2da9m aakaaabaGaaGOmaiqbew7aLzaacaWaa0baaSqaaiaadMgacaWGQbaa baGaamiCaaaakiqbew7aLzaacaWaa0baaSqaaiaadMgacaWGQbaaba GaamiCaaaakiaac+cacaaIZaaaleqaaaaaaa@BC9E@

where μ<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeY7aTjabgYda8iaaigdaaaa@33FD@  is a friction coefficient like material parameter.  The solid is subjected to a traction t i * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadshadaqhaaWcbaGaamyAaaqaaiaacQ caaaaaaa@332A@  on its exterior boundary R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkGi2kaadkfaaaa@32A5@  and a body force b i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadkgadaWgaaWcbaGaamyAaaqabaaaaa@3269@  per unit volume in its interior.  The solid collapses for loading β t i * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaam iDamaaDaaaleaacaWGPbaabaGaaiOkaaaaaaa@3B60@ , β b i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaam OyamaaBaaaleaacaWGPbaabeaaaaa@3A9F@ , where β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aIbaa@3209@  is a scalar multiplier to be deterined.

 

6.2.5.1.            Show that the rate of plastic work associated with a plastic strain rate ε ˙ ij p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbew7aLzaacaWaa0baaSqaaiaadMgaca WGQbaabaGaamiCaaaaaaa@3517@  can be computed as Y ε ˙ e / 1+ μ 2 /2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMfacuaH1oqzgaGaamaaBaaaleaaca WGLbaabeaakiaac+cadaGcaaqaaiaaigdacqGHRaWkcqaH8oqBdaah aaWcbeqaaiaaikdaaaGccaGGVaGaaGOmaaWcbeaaaaa@3A99@   

 

6.2.5.2.            We need to understand the nature of the plastic dissipation associated with velocity discontinuities in this material.  We can develop the results for a velocity discontinuity by considering shearing (and associated dilatation) of a thin layer of material with uniform thickness h as indicated in the figure. Assume that the strain rate in the layer is homogeneous, and that the surface at x 2 =h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaGOmaaqabaGccq GH9aqpcaWGObaaaa@344A@  has a uniform tangential velocity v t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaWgaaWcbaGaamiDaaqabaaaaa@3288@  and normal velocity v n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaWgaaWcbaGaamOBaaqabaaaaa@3282@ .  Show that (i) the rate of plastic work per unit area of the layer can be computed as σ 22 v n + σ 12 v t =Y 2 v n 2 + v t 2 / 3(1+ μ 2 /2) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaa qabaGccaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeq4Wdm3a aSbaaSqaaiaaigdacaaIYaaabeaakiaadAhadaWgaaWcbaGaamiDaa qabaGccqGH9aqpcaWGzbWaaOaaaeaacaaIYaGaamODamaaDaaaleaa caWGUbaabaGaaGOmaaaakiabgUcaRiaadAhadaqhaaWcbaGaamiDaa qaaiaaikdaaaaabeaakiaac+cadaGcaaqaaiaaiodacaGGOaGaaGym aiabgUcaRiabeY7aTnaaCaaaleqabaGaaGOmaaaakiaac+cacaaIYa GaaiykaaWcbeaaaaa@4E6C@ , and (ii) to satisfy the plastic flow rule the velocities must be related by v n / v t = 3 μ/2 (1 μ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaWgaaWcbaGaamOBaaqabaGcca GGVaGaamODamaaBaaaleaacaWG0baabeaakiabg2da9maakaaabaGa aG4maaWcbeaakiabeY7aTjaac+cacaaIYaWaaOaaaeaacaGGOaGaaG ymaiabgkHiTiabeY7aTnaaCaaaleqabaGaaGOmaaaakiaacMcaaSqa baaaaa@403B@ .  Note that these results are independent of the layer thickness, and therefore (by letting h0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIgacqGHsgIRcaaIWaaaaa@33FC@  ) also characterize the dissipation and kinematic constraint associated with a velocity discontinuity in the solid.

 

6.2.5.3.            To state the upper bound theorem for this material we introduce a kinematically admissible velocity field v, which may have discontinuities across a set of surfaces S ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadofagaqcaaaa@3150@  in the solid.  Define the strain rate distribution associated with v as

ε ˙ ^ ij = 1 2 ( v i x j + v j x i ) ε ˙ ^ e = 2 ε ˙ ^ ij ε ˙ ^ ij /3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbew7aLzaacyaajaWaa0baaSqaaiaadM gacaWGQbaabaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaa daqadaqaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGPbaabe aaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGaey4k aSYaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadQgaaeqaaaGcba GaeyOaIyRaamiEamaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGL PaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlqbew7aLzaacyaajaWaaSbaaSqaaiaa dwgaaeqaaOGaeyypa0ZaaOaaaeaacaaIYaGafqyTduMbaiGbaKaada qhaaWcbaGaamyAaiaadQgaaeaaaaGccuaH1oqzgaGagaqcamaaDaaa leaacaWGPbGaamOAaaqaaaaakiaac+cacaaIZaaaleqaaOGaaGPaVl aaykW7aaa@6958@

The velocity field must satisfy ε ˙ ^ kk =3μ ε ˙ ^ e /2 1+ μ 2 /2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqbew7aLzaacyaajaWaaSbaaSqaaiaadU gacaWGRbaabeaakiabg2da9iaaiodacqaH8oqBcuaH1oqzgaGagaqc amaaBaaaleaacaWGLbaabeaakiaac+cacaaIYaWaaOaaaeaacaaIXa Gaey4kaSIaeqiVd02aaWbaaSqabeaacaaIYaaaaOGaai4laiaaikda aSqabaaaaa@41D4@  in the interior of the solid, and must satisfy

v n = v t μ 3 /2 1 μ 2 v n =( v i + v i ) m i v t =| v i + v i v n m i | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaaGWaaeaacaWG2bWaaSbaaSqaai aad6gaaeqaaaGccaGLAaJaay5gWaGaeyypa0ZaaGWaaeaacaWG2bWa aSbaaSqaaiaadshaaeqaaaGccaGLAaJaay5gWaGaeqiVd02aaOaaae aacaaIZaaaleqaaOGaaGPaVlaac+cacaaIYaWaaOaaaeaacaaIXaGa eyOeI0IaeqiVd02aaWbaaSqabeaacaaIYaaaaaqabaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVpaaimaabaGaamODamaaBaaaleaacaWGUbaabeaaaOGaay PgWiaawUbmaiabg2da9maabmaabaGaamODamaaDaaaleaacaWGPbaa baGaey4kaScaaOGaeyOeI0IaamODamaaDaaaleaacaWGPbaabaGaey OeI0caaaGccaGLOaGaayzkaaGaamyBamaaBaaaleaacaWGPbaabeaa aOqaamaaimaabaGaamODamaaBaaaleaacaWG0baabeaaaOGaayPgWi aawUbmaiabg2da9maaemaabaGaamODamaaDaaaleaacaWGPbaabaGa ey4kaScaaOGaeyOeI0IaamODamaaDaaaleaacaWGPbaabaGaeyOeI0 caaOGaeyOeI0YaaGWaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaaGc caGLAaJaay5gWaGaamyBamaaBaaaleaacaWGPbaabeaaaOGaay5bSl aawIa7aaaaaa@7A0D@

on S ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadofagaqcaaaa@3150@ , where m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2gadaWgaaWcbaGaamyAaaqabaaaaa@3274@  denotes a unit vector normal to S ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadofagaqcaaaa@3150@ .  Define the plastic dissipation function as

Φ(v)= R Y ε ˙ ^ e 1+ μ 2 /2 dV+ S ^ Y 3(1 μ 2 ) v t dA R b i v i dV R t i * v i dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfA6agjaacIcacaWH2bGaaiykaiabg2 da9maapefabaWaaSaaaeaacaWGzbGafqyTduMbaiGbaKaadaWgaaWc baGaamyzaaqabaaakeaadaGcaaqaaiaaigdacqGHRaWkcqaH8oqBda ahaaWcbeqaaiaaikdaaaGccaGGVaGaaGOmaaWcbeaaaaaabaGaamOu aaqab0Gaey4kIipakiaadsgacaWGwbGaey4kaSYaa8quaeaadaWcaa qaaiaadMfaaeaadaGcaaqaaiaaiodacaGGOaGaaGymaiabgkHiTiab eY7aTnaaCaaaleqabaGaaGOmaaaakiaacMcaaSqabaaaaOWaaGWaae aacaWG2bWaaSbaaSqaaiaadshaaeqaaaGccaGLAaJaay5gWaaaleaa ceWGtbGbaKaaaeqaniabgUIiYdGccaWGKbGaamyqaiabgkHiTmaape fabaGaamOyamaaBaaaleaacaWGPbaabeaakiaadAhadaWgaaWcbaGa amyAaaqabaaabaGaamOuaaqab0Gaey4kIipakiaadsgacaWGwbGaey OeI0Yaa8quaeaacaWG0bWaa0baaSqaaiaadMgaaeaacaGGQaaaaOGa amODamaaBaaaleaacaWGPbaabeaaaeaacqGHciITcaWGsbaabeqdcq GHRiI8aOGaamizaiaadgeaaaa@6AFA@

Show that (i) Φ( u ˙ )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfA6agjaacIcaceWH1bGbaiaacaGGPa Gaeyypa0JaaGimaaaa@3602@ , where u ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahwhagaGaaaaa@316F@  denotes the actual velocity field in the solid at collapse, and (ii) Φ(v)0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfA6agjaacIcacaWH2bGaaiykaiabgw MiZkaaicdaaaa@36BA@

 

6.2.5.4.            Hence, show that an upper bound to the load factor at collapse can be calculated as

β L R Y ε ˙ ^ e 1+ μ 2 /2 dV+ S ^ Y 3(1 μ 2 ) v t dA R b i v i dV+ R t i * v i dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aInaaBaaaleaacaWGmbaabeaaki abgsMiJoaalaaabaWaa8quaeaadaWcaaqaaiaadMfacuaH1oqzgaGa gaqcamaaBaaaleaacaWGLbaabeaaaOqaamaakaaabaGaaGymaiabgU caRiabeY7aTnaaCaaaleqabaGaaGOmaaaakiaac+cacaaIYaaaleqa aaaaaeaacaWGsbaabeqdcqGHRiI8aOGaamizaiaadAfacqGHRaWkda WdrbqaamaalaaabaGaamywaaqaamaakaaabaGaaG4maiaacIcacaaI XaGaeyOeI0IaeqiVd02aaWbaaSqabeaacaaIYaaaaOGaaiykaaWcbe aaaaGcdaacdaqaaiaadAhadaWgaaWcbaGaamiDaaqabaaakiaawQbm caGLBadaaSqaaiqadofagaqcaaqab0Gaey4kIipakiaadsgacaWGbb aabaWaa8quaeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaamODamaa BaaaleaacaWGPbaabeaaaeaacaWGsbaabeqdcqGHRiI8aOGaamizai aadAfacqGHRaWkdaWdrbqaaiaadshadaqhaaWcbaGaamyAaaqaaiaa cQcaaaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaaqaaiabgkGi2kaadk faaeqaniabgUIiYdGccaWGKbGaamyqaaaaaaa@6997@

 

 

 

 

6.2.6.      As an application of the results derived in the preceding problem, consider a soil embankment with vertical slope, as shown in the figure.   The soil has mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYbaa@3228@  and can be idealized as a frictional material with constitutive equation given in the preceding problem.   Using a collapse mechanism consisting of shearing and dilatation along the line AB shown in the figure (the angle θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeI7aXbaa@321E@  for the optimal mechanism must be determined), calculate an upper bound to the admissible height h of the embankment. 

 

 

 

 

6.2.7.      The figure shows a statically indeterminate structure.  All bars have cross-sectional area A, Young’s modulus E and uniaxial tensile yield stress Y.  The solid is subjected to a cyclic load with mean value P ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadcfagaqeaaaa@3155@  and amplitude ΔP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejaadcfaaaa@32A3@  as shown

6.2.7.1.            Select an appropriate distribution of residual stress in the structure, and hence obtain a lower bound to the shakedown limit for the structure.  Show the result as a graph of ΔP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejaadcfaaaa@32A3@  as a function of P ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadcfagaqeaaaa@3155@

6.2.7.2.            Select possible cycles of plastic strain in the structure, and hence obtain an upper bound to the shakedown limit for the structure.

You should be able to find residual stresses and plastic strain cycles that make the lower and upper bounds equal, and so demonstrate that you have found the exact shakedown limit.

 

 

 

6.2.7.3.            Calculate upper and lower bounds to the shakedown limit for a beam subjected to three point bending as shown in the figure.  Assume the applied load varies cyclically with mean value P ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqadcfagaqeaaaa@3155@  and amplitude ΔP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejaadcfaaaa@32A3@ .

 

 

 

 

 

 

6.2.7.4.            The stress state induced by stretching a large plate containing a cylindrical hole of radius a at the origin  is given by

σ 11 = σ 0 ( 1+( 3 a 4 2 r 4 a 2 r 2 )cos4θ 3 a 2 2 r 2 cos2θ ) σ 22 = σ 0 ( ( a 2 r 2 3 a 4 2 r 4 )cos4θ a 2 2 r 2 cos2θ ) σ 12 = σ 0 ( ( 3 a 4 2 r 4 a 2 r 2 )sin4θ a 2 2 r 2 sin2θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeq4Wdm3aaSbaaSqaaiaaigdaca aIXaaabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIWaaabeaakmaa bmaabaGaaGymaiabgUcaRmaabmaabaWaaSaaaeaacaaIZaGaamyyam aaCaaaleqabaGaaGinaaaaaOqaaiaaikdacaWGYbWaaWbaaSqabeaa caaI0aaaaaaakiabgkHiTmaalaaabaGaamyyamaaCaaaleqabaGaaG OmaaaaaOqaaiaadkhadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGa ayzkaaGaci4yaiaac+gacaGGZbGaaGinaiabeI7aXjabgkHiTmaala aabaGaaG4maiaadggadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGa amOCamaaCaaaleqabaGaaGOmaaaaaaGcciGGJbGaai4Baiaacohaca aIYaGaeqiUdehacaGLOaGaayzkaaaabaGaeq4Wdm3aaSbaaSqaaiaa ikdacaaIYaaabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIWaaabe aakmaabmaabaWaaeWaaeaadaWcaaqaaiaadggadaahaaWcbeqaaiaa ikdaaaaakeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTm aalaaabaGaaG4maiaadggadaahaaWcbeqaaiaaisdaaaaakeaacaaI YaGaamOCamaaCaaaleqabaGaaGinaaaaaaaakiaawIcacaGLPaaaci GGJbGaai4BaiaacohacaaI0aGaeqiUdeNaeyOeI0YaaSaaaeaacaWG HbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaadkhadaahaaWcbe qaaiaaikdaaaaaaOGaci4yaiaac+gacaGGZbGaaGOmaiabeI7aXbGa ayjkaiaawMcaaaqaaiabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqaba GccqGH9aqpcqaHdpWCdaWgaaWcbaGaaGimaaqabaGcdaqadaqaamaa bmaabaWaaSaaaeaacaaIZaGaamyyamaaCaaaleqabaGaaGinaaaaaO qaaiaaikdacaWGYbWaaWbaaSqabeaacaaI0aaaaaaakiabgkHiTmaa laaabaGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadkhadaahaa WcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaci4CaiaacMgacaGG UbGaaGinaiabeI7aXjabgkHiTmaalaaabaGaamyyamaaCaaaleqaba GaaGOmaaaaaOqaaiaaikdacaWGYbWaaWbaaSqabeaacaaIYaaaaaaa kiGacohacaGGPbGaaiOBaiaaikdacqaH4oqCaiaawIcacaGLPaaaca aMc8UaaGPaVlaaykW7aaaa@A46E@

Use these results to calculate lower and upper bounds to the shakedown limit for the solid (assume that σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIWaaabeaaaa a@3311@  varies periodically between zero and its maximum value)